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Abstract: 

\ve show how nonlinear effects of the metric and scalar fields may be inciuded in stochastic 
inflation. Our formalism can be applied to non-Gaussian fluctuation models for galaxy forma- 
tion. Fluctuations with wavelengths larger than the horizon length are governed by a network of 
Langevin equations for the physical fields. Stochastic noise terms arise from quantum fluctua- 
tions that are assumed to become classical at horizon crossing and which then contribute to the 
background. I?sing Hamilton-Jacobi methods, we solve the ADM constraint equations which 
alioas us to separate the growing modes from the decaying ones in the drift phase following 
each stochastic impulse. We argue that the most reasonable choice of time hypersurfaces for the 
Lang&n system during inflation is T = ln(lla), where H and u are the local values of the Hub- 
ble parameter and the scale factor, since T is the natural time for evolving the short wavelength 
scalar field fluctuations in an inhomogeneous background. We derive a Fokker-Planck equation 
which describes how the probability distribution o-f scalar field values at a given spatial point 
evolves in T. Analytic Green’s function solutions obtained for a single scalar field self-interacting 
through au exponential potential are used to demonstrate: (1) If the initial condition of the Hub- 
ble parameter is chosen to be consistent with microwave background limits, A(&)/mv s 10-s, 
then the fluctuations obey Gaussian statistics to ahigh precision, independent of the time hyper- 
surface choice and operator ordering ambiguities in the Fokker-Pl+nck equation. (2) For scales 
much larger than our present observable patch of the Universe, the distribution is non-Gaussian, 
with a tail extending to large energy densities; although there are no observable manifestations, 
it does show eternal inflation. Lattice simulations of our Lang&n network for the exponential 
potential demonstrate how spatial correlations are incorporated. An initially homogeneous and 
isotropic lattice develops fluctuations as more and ‘more quantum fluctuation modes leave the 
horizon. yielding Gaussian contour maps for a region corresponding to our observable patch and 
non-Gaussian contour maps for the ultra-large scale structure of the Universe. In5ation models 
with extended non-Gaussian tails at observable scales would lead to a radically different cosmic 
structure than Gaussian perturbations give. 
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I. INTRODUCTION 

One of the most important problems in inflation cosmology is to formulate the generation 
of density fluctuations for galaxy formation within a fully quantum mechanical framework in- 
cluding gravitational effects. Improvements in the current calculational methods would allow 
one to compute primordial fluctuations which are not described by Gaussian scale-invariant ran- 
dom fields. Modifications of the standard inflation model of structure formation, the adiabatic 
Gaussian scale-invariant Cold Dark Matter model, may be desirable for explaining large scale 
structure observations.‘-5 Techniques for performing inflation calculations include: (1) Using 
the quantum mechanical Wheeler-deWitt equation, one solves for the wavefunction of a homoge- 
neous universe with linear perturbations, 6’ but with no back-reaction of the perturbations on the 
homogeneous background. (2) Fluctuations of the metric and scalar fields are treated in linear 
perturbation theory as quantum Heisenberg operators on a homogeneous classical background,8 
again with no back-reaction; this method is well-suited for numerical calculations, because the 
quantum perturbation equations are almost identical to the classical perturbation equations. 

We explore a different facet of the problem by considering a classical. inhomogeneous and 
nonlinear background which fluctuates only on scales larger than the Hubble radius. In the 
stochastic inflation framework developed by Vilenkin,g Starobinski”’ and many others, small 
scale quantum fluctuations are assumed to become classical upon horizon crossing and act as a 
stochastic force on the background. The fields are decomposed into long and short wavelength 
components, 

$jj(ttz’) = Jj(tyZ’) + 64j(t,zi), grv(t,z’) = Sgu(t~~‘) +69iw(t,~‘)* (1.1) 

where 6j contains all Fourier modes longer than the horizon length, (k/a)-’ > A-‘, (H is t,he 
Hubble parameter) and &$i contains all modes shorter than the horizon length. $j is treated 
as a classical field. When the quantum fluctuations embodied in 64j leave the horizon, they 
too are treated as a random classical field. This assumption cannot be rigorously justified, 
although recent work in the quantum to classical transition using simplified toy models” makes 
it appear reasonable. From a practical point of view, one can argue that the fields evolve 
essentially classically at large wavelengths although, strictly speaking, there is no consistent 
quantum theory of long wavelength evolution. t2 In this paper, we shall include the classical 
metric back-reaction at long wavelengths. 

Starobinski”’ considered a scalar field slowly rolling down a potential in a de Sitter back- 
ground. Guided by intuition, he made numerous assumptions and approximations in order to 
obtain the following Fokker-Planck (FP) equation, 

gw) = &f&-P) + $$$, (1.2) 

which is a diffusion-type partial differential equation describing the probability P(t, Q) of ob- 
serving a scalar field value at time t. That the scalar field interacts through a potential V(O), 
whereas the fixed de Sitter background is characterized by a constant Hubble parameter, Ho, 
is an inconsistency in this equation. Over the past few years, researchers have tried to justify 
as well as extend this formalism. Bardeen and Bublikm obtained a FP equation for the case 
where a scalar field was slowly rolling down a potential while its energy density was causing the 
Universe to inflate; they also numerically integrated it. Graziani and Olynykt4 chose instead 
to integrate the Lang&n equation for the scalar field value at a point, which is an ordinary 
differential equation containing a stochastic noise term. With a more careful treatment of the 
quantum noise term in the Langevin equation, Hosaya, Morikawa and Nakayama” were able to 
remove the slow-roll assumption. Nakao, Nambu and Sasaki” wrote the Lang&n equations in 
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a de Sitter background as a series of first order differential equations which allows one to have 
stochastic noise terms in the scalar field momenta as well as the scalar field itself. 

The effects of metric fluctuations were not discussed in the initial formulation of stochastic 
inflation. Goncharov, Linde, and Mukhanov” incorporated metric fluctuations in linear theory. 
We extend this work by including the possibly nonlinear back-reaction of the metric at long 
wavelengths. We also find that one must carefully consider the time parameter that appears in 
the FP equation for the probability function to be meaningful. Time specifies the hypersurface 
upon which to measure the fluctuations. For example, if one chooses 6 as time then all fluctu- 
ations in o are necessarily zero, but the fluctuations are still present - in (I = In a. The time 
hypersurface should be specified in terms of the physical variables, @ and (I in this case. 

Grinstein, Allen and Wiset8 and Xofman and Linde” were the first to consider whether 
non-Gaussian fluctuations could arise in inflation; they worked in the context of an axion model. 
Ortolan, Lucchin and hfatarre8ezo~z’ considered the possibility that non-Gaussian fluctuations 
for galaxy formation might arise in stochastic inflation driven by an exponential potential. Us- 
ing approximate solutions of the FP equation, they claimed that non-Gaussian fluctuations for 
structure formation were generic. Hodges 8* has given an argument suggesting that fluctua- 
tions are characteristically Gaussian for a Xo’/4 potential. We produce exact Green’s function 
&utions of the Fokker-Planck equation for inflation with an exponential potential which demon- 
strate that fluctirations of relevance for our observed patch of the Universe would be Gaussian, 
although non-Gaussian fluctuations are generic on ultra-large (unobservable) scales. 

The stochastic approach developed here is not an end in itself, but is a framework for 
understanding the nonlinear interaction of the metric and scalar fields in inflation models. The 
long wavelength problem is one of the easiest nonlinear, inhomogeneous gravitational models 
where one can calculate the full back reaction of the metric including gravitational radiation8s 
The long-short split at the Hubble radius thus serves as a powerful calculational tool in inflation 
models. The stochastic approach allows one to model nonlinear mode-mode coupling between 
long and short wavelengths. It captures some quantum features by applying a probabilistic 
description. But. ultimately, the linear treatment of short wavelength fluctuations that we 
adopt here is suspect because one must eventually incorporate a short distance cutoff to the 
theory. It is quite possible that the assumed independent Gaussian noise terms which arise 
from a ground state in linear perturbation theory are not correct. More complicated ground 
state configurations could arise because of nonlinear effects at some scale, say the GUT scale 
or possibly the Planck scale. In this case, the stochastic formalism would serve as a transport 
theory of short scale quantum fluctuations to wavelengths longer than the Hubble radius. 

In Sec. ILA, we present the long wavelength background equations, consisting of the en- 
ergy and momentum constraints, and a set of first order evolution equations for the physical 
fields, oj, o = Ina and their momenta II+; = &/N, H = d/N. N(l,z) is the lapse function 
and a(t. 2) is the local scale factor of the Universe. The evolution equations contain stochastic 
noise terms because quantum fluctuations contribute to the inhomogeneous background when 
their wavelength exceeds the horizon length. The constraints do not contain noise terms and 
they reduce to a single partial differential equation, the separated Hamilton-Jacobi equation for 
homogeneous fields which may be solved without reference to the other equations. A tremen- 
dous simplification occurs if the decaying mode is neglected, since one may then disregard the 
evolution equations for the momenta. 

Specifying the time surface on which the stochastic forces act is a difficult issue. In Sec. 
1I.B. we suggest T = ln(Ba) as the time variable. On this time hypersurface, one may solve 
analytically for short wavelength quantum modes on a long wavelength background. 1Vhen 
the wavelength of a mode exceeds the Hubble radius, it acts as a stochastic force on the long 
wavelength background. Because of the matching of short wavelengths on to large 1’ ,‘I ~,lengths 
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when k = (Ha) = eT, the stochastic method is slightly imprecise. For the case where fields 
evolve relatively slowly, this is not a problem. The stochastic force depends on the local value 
of the Hubble parameter, which can lead to non-Gaussian fluctuations as the system evolves. 
?Con-Gaussian fluctuations can also arise from nonlinearities due to mode-mode coupling in the 
background evolution. The probability, P(bjlJT), of observing SC~U field values $j CJ~ a surface 
of uniform T is governed by a Fokker-Planck equation. 

The initial conditions for stochastic inflation are welI posed if one wishes to model structure 
in OUT observable Universe. One begins with an isotropic and homogeneous patch of the Universe. 
Inhomogeneities in the long wavelength background fields are subsequently produced by quantum 
Fourier modes that leave the horizon with a Gaussian distributed amplitude having a root- 
mean square dispersion given by the Hawking temperature: [k3/(2~‘)la~(k)1*]‘/’ = R/(b), as 
suggested in linear theory (see Salopek, Bond and Bardeens which we shall refer to as SBB). 

In Sec. III, exact Green’s function solutions describing the evolution of an initial delta- 
function distribution are obtained for the csse of a single scalar field in an exponential potential. 
Green’s functions are examples of limited statistics which contain much valuable information; 
they describe the distribution of scalar field values in a lattice which began homogeneously with 
+j = 6je. One can also determine a nonlinear quantity analogous to the fluctuation spectrum 
from the moments of the one-point distribution. 

We follow the evolution a single scalar field in a 3-dimensional lattice in Sec. IV. Spatial 
correlations arise entirely from the quantum noise terms. When the initial Hubble parameter is 
of the order of the Planck scale, significant non-Gaussian fluctuations appear. Althcmgh we find 
the size of the lattice is much larger than our observable Universe, this model is one of simplest 
examples of non-Gaussian fluctuations arising in cosmology, and it illuminates more realistic 
models involving multiple scalar fields. Finally, in Sec. V, we summarize our results. 

II. INCORPORATING GRAVITATIONAL FLUCTUATIONS INTO THE 
STOCHASTIC FORMALISM 

The stochastic approach is an approximate method for performing inflation calculations 
which has some similarities mathematically to the WKB method for salving bound state prob- 
lems in elementary quantum mechanics: there is a rapidly oscillating WKB solution at small 
distances which is matched onto an analytically tractable large distance solution. In inflation, 
however, large and short distance refers to long and short wavelength decompositions of the 
fields; and instead of the matching occurring at the boundary between the classically silowed 
and forbidden regions, it is now at the comoving Hubble radius, which is continuously shrinking 
in time. As well, in inflation, the long wavelength growing solution is selected while the decaying 
solution can be dropped, whereas in the bound state problem the opposite occurs. Matching 
short and long wavelength fields at the Hubble radius is facilitated by using the Hamilton-Jacobi 
formalism,r2 which naturally separates the growing and decaying modes. Also, numerical cal- 
culations we have performed using linear perturbation theory8 show that matching is quite 
straightforward in situations where the fields are evolving relatively slowly. 

In Sec. A, we develop the stochastic long wavelength dynamical equations and solve the long 
wavelength constraint equations using Hamilton-Jacobi theory. In Sec. B., we treat short wave- 
length fluctuations using linear perturbation theory about an inhomogeneous long wavelength 
background, a generalization of the standard previous calculations of quantum fluctuations on 
a homogeneous background, and show that a Fourier-type WKB solution is a good approxi- 
mation for wavelengths much smaller than the Hubble radius. Although this approximation 
breaks down when the wavelength of a Fourier mode approaches the Hubble radius, we argue 
by analogy with the homogeneous case that the stochastic contributions to the long wavelength 
fields are adequate representations of the physics involved. This WKB approximation suggest a 
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natural choice for the time hypersurfaces for evolving the long wavelength fields: those on which 
the local conformal time r is uniform. We also show that surfaces of constant comoving Hubble 
radius (Ra)-i are more tractable and yet provide reasonable approximations to the T surfaces. 
In Sec. C, we derive the Lang&n and Fokker-Planck equations for the long wavelength fields. 
In Sec. D, we discuss the form of the initial conditions for stochastic inflation. In Sec. E, we 
show how to transform the late time Fokker-Planck probability distribution to a form that may 
be compared with observations. A useful fluctuation function computable from the moments 
of the Green’s function solution to the Fokker-Planck equation is introduced which provides a 
simple measure of the fluctuations as a function of physical volume. 

A. Inhomogeneous Background Equations 

We consider a system of real scalar fields, 4j, j = 1, n, which self-interact through a potential 
I’($j) and which couple to gravity via a metric of the form 

ds* = -N’(T, z’)dT’ + e2m(T.=‘)(dzz + dy’ + dr’). 

The lapse function, .V, and the logarithm of the scale factor. (I = lna, are taken to be spatially 
dependent to describe large scale inhomogeneities. The shift vector .v’ has been set to zero 
and the 3-metric is assumed to be conformally flat. This metric does not describe gravitational 
radiation, which is dynamically unimportant relative to the scalar field at long wavelengths23 
and decouples from the remaining degrees of freedom at short wavelengths. in linear perturbation 
theorv.?4 

The ADM 3+1 split of Einstein’s equatio& is convenient because all the evolution equa- 
tions are first order in time derivatives. The dynamical variables are @j and o and their momenta, 
II”, = ij/N and ZI = &IN. Nakao et al. is also adopted a first order formalism, but here we 
generalize to self consistently incorporate the metric as well as the scalar fields. We decompose 
the fields into long wave components, e.g., $j, and short wave components, e.g., a$,, which we 
assume are small: thus. e.g., dj(T,z’) = .$~(T,z’)+&$j(T,z’). In the ADhI equations. gradient 
terms are always multiplied by e-*. We neglect all terms which are of second order or higher in 
spatial gradients, but keep those of first order. For example &,r&$‘, $I, and (a)R are of second 
order and are dropped. The background equations are the same as those given in SBl except 
for stochastic forces describing the short wave communication with the background fields: 

R2 = ~(~Cir”2+V(dj)) 

a,i = L$cji”& 
i 

(2.1a) 

jz.lb) 

A& = WNh~+hs, (Z.lc) 

AH = {-~d'+~[V(~j)-~Cir""]}niATtAS~ 
I 

(2.ld) 

A&~ = W.~AT+AS (?.le) 

An6 = [ - 3fffI”i _ j$W+ASnli (2Jf 1 

The first two equations are the energy and momentum constraints. With our choice of metric. 
the evolution equation for the traceless part of the extrinsic curvature vanishes identically. Since 
we are considering stochastic processes. we have written the evolution equations in terms of finite 



differences, denoted by A. The stochastic noise terms, denoted by As, are due to those short 
vave fluctuations which have crossed the Hubble radius during the time step AT. In the absence 
of the stochastic terms, these background evolution equations are valid for any choice of time 
hypersurfaces if second order spatial gradients are neglected. Our choice of time here is governed 
by the fluctuations that arise within the horizon. In a time step AT the scalar fields will undergo 
a change A$j consisting of a classical drift fl”fI?AT plus an impulse 

ASm; = C 64j(T, i;)e~~‘.~, &T)e”(‘) 5 k < ff(T + AZ’)e6tTtA=1, 
k 

from all wave modes whose comoving wavenumber k is in the range indicated, i.e., whose 
wavelengths have exceeded the horizon length during that time step. The impulses for the other 
variables are a similar sum. The constraint equations do not contain noise terms since there are 
no explicit time derivatives. The explicit form of AS will be derived in Sec.B.2. 

The stochastic noise terms can be viewed as impulses which continually adjust the initial 
conditions for the next phase of drift. It is more straightforward to do this for each independent 
degree of freedom in a first order Hamiltonian formulation than in a second order formulation, 
where time derivatives of delta-functions would have to be included. This can be seen in the 
simple example of a one dimensional simple harmonic oscillator obeying mi: + kz = 0. If we use 
the coupled first order equations for z and the momentum p = mj, then the initial conditions, 
z(to) = zs, i(te) = pe/n may be incorporated into the equations through delta function source 
terms: i = p/m + z&r - to), ri = -kz + p&t - to). By integrating both of these equations to 
to + 6. we recover the initial conditions provided we take z(-co) = 0 = p(-cc). 

To integrate the two constraints equations in (‘2.1), we follow the analysis in SBl. The 
momentum constraint implies that the Hubble parameter is a function of the scalar fields and 
the time parameter. T, 

a 3 rf(&z’), T), where l?j = -2$(&z’), T). 
, 

Substituting this result into the energy constraint leads to the separated Hamilton-Jacobi equa- 
tion ISHJE). 

a partial differential equation which does not depend explicitly on time. It may be inte- 
grated without reference to the evolution equations. We catalogue its solutions by writing 
H 5 a($j,.1j). The n parameters, 1j q I,(T), j = l,n, are assumed to be spatially indepen- 
dent for simplicity. 

One may view this step as a canonical transformation from the independent variables, &j, 
Bdj, to new canonical variables I,, .7j through the relations 

II@, = -m$/(4n)aH/a#j , Jj = +m$/(4*)P8H/aIj. 

(The application of canonical transformations to the classical long wavelength problem, including 
the case where I, may be spatially dependent, is &Cussed in Salopek.s3) In the absence of 
stochastic forces, the new variables are constant in time. t2 This is not true here. In principle, 
one could replace the evolution equations in $j m $j(lj, P), II+i m II”(Ij, JJ) by ones in I;, 
J’. by including diffusion in time. In practice, t,his proves to be extremely difficult because 
n-parameter solutions of the Hamilton-Jacobi equation are known only for certain classes of 
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potentials,23 and, even in these cases, variable changes in stochastic systems must be treated 
carefuily. For example. in going from time T to T t AT, the increment AI, must expanded to 
second order in the increments A@j and AII@j: 

ar, 1 azI. 
A4 = a$, Adk + ? ati,a#, ~A&A& + other terms in A&, AI@ AIt”, AdhAP’ 

in order to be accurate to order AT since, for example, A4j contains the noise term AS+; which 
is of order AT’l2 (e.g., see eq.(A5b) in Appendix A). 

In this paper, we bypass many of these complications by noting that, in the simplest models, 
the Hubble function H(Qj,Ij) depends rather weakly on Ij so it is unnecessary to accurately 
monitor the time evolution of I,. In the absence of stochastic terms, we have already shown” 
that two slightly different solutions of the SHJE approach each other rapidly, with their deviation 
AH behaving as a decaying mode, 

AB 3 gAIj cx e-=. 
, 

In cases where all the fields are moving relatively slowly or where there is an attractor solution 
for H. it is a good approximation to take 1b as a constant. For example, the slow roll-over 
approximation. s Z HSR, where s& = SnV($j)/(377L%), contains no arbitrary parameters 
and the momenta are uniquely determined by frj = -m$/(4x)(a~sR/a$,), When roll-down 
is not necessarily slow. it may still be valid to neglect the explicit 1, dependence. An example 
is a single scalar field moving in an exponential potential for which A converges towards an - attractor solutmn, tl.,,, which differs from ns~. 

Stochastic noise repeatedly perturbs the system away from the attractor, but the system 
quickly returns to it. Taking the Ij to be constants allows us to drop the evolution equations 
for H and lImi: the number of equations is reduced in half. This is one of the key assumptions 
in this paper. It greatly facilitates our analysis leading to the exact solutions of Sec. III. 
There are situations with more than one scalar field, for example with moguls on the potential 
surface,* for which the assumption of constant Ik is probably not valid. In this case, integrating 
the constraints using Hamilton-Jacobi theory is not very useful, and a different approach is 
required.” 

With the neglect of the decaying mode contribution, R = R&&) does not depend explic- 
itly on time. The scalar iield momenta are given by partial derivatives of ff,,,, so the momentum 
Cvolution equations. (2.ld,f) may otherwise be disregarded. The system of equations governing 
the evolution of the inhomogeneous long wavelength background that we solve in this paper are 
then 

a ZIt($j), (2.24) 

772 an- AJj = - 2 -NAT + AS*,, 
4x &j 

(2.26) 

(2.2c) 

A& =HNATfAS,. (2.2d) 

If the time coordinate is chosen to be a function of 6j and 6, equations (2%) and (2.2di will not 
be independent. The final number of degrees of freedom is just equal to the number of scalar 
fields. 



We emphasize again that this system is not valid in all situations. The more general case in 
which one solves equations of the form of (2.1) with the inclusion of noise terms in the momenta 
requires careful treatment to ensure that the decaying modes are adequately treated numerically. 
as we describe in Bond and Salopek. 24 Nonetheless (2.2) represents an extremely useful and more 
accurate generalization of the usual Starobinski slow rollover assumption for stochastic inflation 
where (2.2a,b) are replaced by B = A.$& so (2.2~) becomes 

d aasR A,jj = -2 - 4n a6, At+%,, 
aAsR 1 av 

I 
where x = --Y. 

38 a~j 

In the Starobinski case, the time t is chosen to be synchronous time, with m = 1. We believe 
that a more suitable choice of time hypersurface is one on which the comoving Hubble function 
UN is uniform. as we now justify. 

B. Perturbations within the Horizon and 
The Choice of Time Hypersurface 

1. Perturbations on a Homogeneous Background 

Before turning to the description of perturbations bdj(T,Z’) on an inhomogeneous long 
wavelength background Jj(7’, z’) in Sec. B2, we illustrate the main issues on a homogeneous 
background Jj(T), using the well dev&ped linear perturbation theory of the metric and scalar 
fields in the longitudinal gauge, as described in SBB.8 In the longitudinal gauge, the metric is 
of the form used in Sec. I1.A. To conform to the SBB notation, ye let @,y z a(&~‘) - 6(t), 
where &(t) is uniform background value, N = 1 and 6N = @a(t, z’). Thus, we have 

$j(t32’) = $j(t)+d@j(t,Z’), 

gw(t,Z’) = -(l + 2@~(t,Z’)), gij(<,zj) = U2(t)6ij(l + 2*rf(t,Zi)), 

In linear perturbation theory, the anisotropic stress for scalar perturbations vanishes, which 
imposes the condition @A = -@H. As well, in linear theory the scalar field is decoupled from 
gravitational radiation. The perturbation equations are 

(!$ ?) 42 @If = L. 4,&j + (3E;Gj + $)6$j, 

) 
(2.3a) 

(2.36) 

6Jj + 3B6dj + h&j + c = 6& - 2+ + 4ij& = 0. 
i WjWi 

(2.3~) 
, 

Tote that the perturbation to the Hubble function is 6R is given 5y (2.3b), which is the lin- 
ear perturbation theory version of the momentum constraint equation. Eqs.(2.3a) is the linear 
perturbation theory version of the energy constraint equation. Of course, eq.(2.3c) is the eve- 
lution equation for the scalar field. The equations have been expanded in spatial eigenmodes, 
which, for the flat universes considered here, are just plane waves eXp[ikjZ’] labelled by the the 
comoving wavenumber c. Substitution of (2.3a,b) into (2.3~) yields an equation solely in Sdj. 
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For large k/(Ha)> the metric terms involving @H and the effective mass matrix i)?V/aGj& are 
subdominant. and, to leading order in k/a, we have 

6Gj f 3R6$j t z6dj = 0. 

This can be solved using the WKB approximation. It admits a positive energy solution describing 
a ground state wave-function, 

hc$j = e -+fd+/(d%), valid for kja > H, (a2v~a+;)‘~2. (2.5) 

.4t horizon crossing, k/(Ha) = 1, this solution predicts that the fluctuations leave the horizon 
with an rms amplitude given by the Hawking temperature: 

[k3/(2n2)la~(k)lz)“* = H/(b). (2.6) 

Of course the WKB approximation breaks down before the time when Ha = k. Nonetheless, 
j 2.6) does provide a reasonably accurate result for the horizon crossing amplitude, its determined 
by the numerical studies of SBB. Further, there is a period after horizon crossing when 6q 
remains approximately constant, before the influence of the metric perturbations causes it to 
grow. We can illustrate this behavior using the well known exact solution of (2.4) for the case 
of de Sitter space with H constant, describing the Bunch-Davies vacuum:?s 

6d(t, k) = &(i + A) exp[ik/(Ha)]. 

This agrees with the positive energy solution (2.5) in the large k/(Ha) limit, and in the opposite 
limit, k/(Ha) -+ 0, the asymptotic dependence (2.6) is exact. However. in the more general 
situations where the Hubble parameter varies in time, small deviations of the rms fluctuations 
from the Hawking temperature at Horizon crossing will occur. 

One cannot effectively address the issue of time coordinate choice in stochastic inflation 
without relating it to the short wavelength inhomogeneities, for time is not just some arbitrary 
integration parameter, but specifies the hypersurface upon which the fluctuations are measured. 
This issue has largely been ignored in the previous literature. For example, the time used 
in Starobinski’s Fokker-Planck equation (1.2) which is valid in de Sitter space was basically 
a synchronous time coordinate. Nonetheless, Starobinski did suggest, though without strong 
justification, that cz would be a better choice. If one considers only long wavelength fields without 
stochastic forces, then we have argued that (I is indeed a natural choice of time parameter.‘2*z3 
However, the situation is somewhat altered when one includes the short scale effects as well. 
This is not yet evident in the longitudinal gauge linear perturbation treatment that led to (2.4) 
describing quantum fluctuations within the horizon. In longitudinal time, the metric fluctuation 
GH = cr(t,z’) - a(t) is approximately zero. If (I is chosen as time, then, of course, Q~H = 0 is 
identically zero. However, because of our crude approximations, this choice of time surface is not 
completely satisfactory. As we show in the next subsection, the short scale evolution appears 
simplest on the long wavelength hypersurfaces of constant He”. However, in many cases of 
interest, H varies slowly compared to P, so the evolution of the fields as measured on constant 
a surfaces does not differ greatly form the evolution measured on constant Hea surfaces. 

2. Perturbations on a Inhomogeneous Background 

Even in an inhomogeneous background, we can solve for the short wave fluctuations by 
introducing a conformal time field, T(T,~‘), defined in terms of the background fields by i/s = 
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i --?. if we choose T as the time parameter, then the lapse function is m = eb. so the background 
I-metric takes the conformally flat form 

ds2 = e2’(‘~“‘)(-dr2 + dz2 + dy? + dz2). 

We may relate T to the physical variables (I and 4 through 

(2.8) 

/ 

e 

/ 

d 
l-= d&-*f$-’ = -l/(e”R) - dtie-“I?‘(di?f/d&). (2.9) 

-ca --ag 

For slow rollover of fields, the second term is small so + R -l/(ae”). Higher order corrections 
may be found by repeated integration by parts. One could also add an arbitrary function of 
the spatial coordinates to (2.9), but then 7 would not be a function only of the physical fields. 
Csing conformal time as the time parameter is somewhat awkward in that it depends in general 
upon the past history of the background fields. Instead we adopt 

T = ln(8e”), (2.10) 

the natural logarithm of the ‘comoving wavenumber’ at horizon crossing, kH = (Ila), as the 
time parameter. An advantage of T over T is that it js always monotonically increasing as any 
good time variable should be. During inflation, T is always increasing. However, during the 
radiation- and matter-dominated regimes. it decreases; but then the stochastic formalism is no 
longer valid because long wavelength waves cross the horizon to feed the short wavelength fields. 

We now show that r is a logical choice for the time coordinate by solving for scalar field 
quantum fluctuations on the long wavelength background. Motivated by the result of Sec. Bl 
that. in the homogeneous background case, the metric back-reaction to scalar field perturbations 
within the horizon is small, we assume short wavelength metric perturbations are negligible for 
the long wavelength background, eq.(2.8). It is convenient to introduce new fields kj(t, t’) = 
e’i*.r’)@j(t,zi), which we split into long and short wavelength contributions, ,y = ,t + 6~. The 
short wavelength perturbation 6x satisfies 

-6Xj,,"' 

@V 
+ e-~[e~],,“6xj + P- a@ 6X! = 0. (2.11) 

All raised indices are defined using v““. The background equations imply that e-“[e”],,“’ = 
e”“[-2f12(Jj) t (m$/(4r)) ~,(aR/~3&)~], w h ere we have neglected second order spatial gradi- 
ents in the background fields. The final perturbation equation governing 6xj is then 

a26x. f _ V26xj + e2Wrsr’) [ - 2ffz + 2 C (g,’ f $16, = 0. 
a4 

(2.12) 
I , 

The Fourier transform of this equation is complicated because e 2a(T,z’) is spatially dependent, 
However, if the wavelength is much larger than the horizon size, then a Fourier wave solution is 
a good approximation: 

6yj(r, 2) = PVr/&iz, if k2 > e2& - 2ff2 + gc ($$)2 f g: 1 
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This generalizes the WKB solution (2.5) for a homogeneous background. The normalization of 
the mode functions is determined by quantum commutation relations (see SBB). At kr xz 
have 

1, we 

as in the homogeneous case. However, the Fourier solution breaks down around kr w 1, at 
which time it provides a stochastic impulse to the inhomogeneous background. Evolution will, 
in general, nonlinearly couple the added waves. 

than 
We now derive the noise terms 6S+,. (From now on, we work with T = & + In A rather 
conformal time.) In going from trme T to T + AT, those wavenumbers which satisfy 

e’ < Ikl < e=+&r 
the change from 

are assumed to contribute an impulse to the background scalar field, making 

d;j(T,z’) to $(T,z’) t R[&T,z’)] (2.14) 

where we use the notation 

In 12.14). we have used the horizon crossing expression e-6(T,r’) = a(rjj(T,z’))/k. Here. aj(k) 
is a complex Gaussian random field> with 

al(k) = dj(-k) and < oj(k)oj,(k’) >= (2tt)sb3(k t k’)ajj*. 

Hence. the stochastic noise term in the long wavelength background equation (2.2~) is 

AS@; = l+(T,z’)] 
eTj,k&+lT 5sk). 

It is therefore Gaussian-distributed with zero mean and variance: 

< ASdm(T. z’) A&_, (T’, 2“) >= 6,,, 

The amplitude of the stochastic impulse therefore depends upon the local value of the Hawking 
temperature H/(27). However, it is unclear whether we should take it to be the Hawking 
temperature evaluated at the beginning of the interval T to T + AT, or whether it should be 
averaged over the interval. .4s we shall see, this ambiguity leads to different possible operator 
orderings occurring in the Fokker-Planck equation derived from the stochastic equations. (We 
prefer evaluating H at T). 

The stochastic impulse for 6, AS,, is related to AS,, since h is defined in terms of T and 
H(d). 

The basic assumption behind stochastic inflation and the derivation of the noise term is 
that one can employ classical random fields to imitate the effects of the quantum fields. If the 
background were truly homogeneous, we could write the noise term as a quantum field, 

L!&(T,r’) = eT5k=j--AT me;(T,i,j [&,,(k)e’(k.X+‘=T) t (;;(k)e-i(k’x+ir=‘)], (2.16) 

11 



in terms of quantum annihilation and creation operators, c,(k) and h!,,(k), which satisfv the 
commutation relations. [i,,,(k), &,,l(k’)] = I&,,,, (2*)363(k - k’) (see, e.g., SBB). The variance 
for this quantum field obeys (2.15). However, there is no consistent quantum theory of long 
wavelength evolution including gravitational effects, and no justification for a quantum noise 
term like this acting on a quantum long wavelength field. There are heuristic arguments that 
suggest long wavelength fields behave classically for the most part.‘* Following Starobinski, we 
model the long wavelength background as the classical Gaussian random field (2.14) with the 
same dispersion as (2.16). This is an assumption seems reasonable but is extremely difficult to 
justify. We also w-emphasize that (2.13) is an approximate expression because there will always 
be some imprecision in the matching between long and short wavelength fields at the Hubble 
radius. 

C. Lang&n and Fokker-PIanck Equations 

With T = ln(lla) as time, the lapse is 

(2.17) 

so the Langevin equation for the scalar field takes the form 

A4 = -J’j(&a)AT + AS+, 1 

where the classical drift ‘force’ is 

(2.18) 

~fj(+m) = - iHZ _ $~~~~a4,2j (2.19a) 

and the quantum noise term AS+_ is Gaussian with the expectation value (2.16). (A small 
diffusion correction to (2.17) ignorable for the applications considered in this paper will be 
discussed in ref.24.) 

In Appendix A, we derive the Fokker-Planck equation for the probability distribution 
P(bjiT) for the field to have values Jj at agiven point zj at time T from the Lang&n equation: 

aP(4jlT) 
BT = -~&[fm(dj)PjJjlT)] + ~C~[(d(~j)~)*p(mjlT)]. (2,19b) 

The first term on the right describes the classical drift, with force Jm, while the second describes 
quantum diffusion, whose magnitude is determined by the covariance matrix of the stochastic 
impulse, 

< hS~_(T,z’)as,_,(T’,z’) >= 6,“~ OTT’ AT (d($j)F]‘. 

-4 correction factor d(c$j) has been included because, in the case of rapid evolution, the fluctlla- 
tions do not leave the horizon at exactly the Hawking temperature. It is usually close to unliy, 
but is difficult to calculate precisely for complicated inflation models. (We touched upon these 
complications in Sec. Bl, but defer a more complete treatment to Bond and Salopek.“) 

The Fokker-Planck equation gives the distribution of scalar field values for a 3-dimensional 
realization. as well as the probability of finding a field value at a given point. Although this 
distribution ignores spatial correlations. it is useful for understanding gross features of the full 
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distribution. For example, one may determine how many points in the 3-D distribution are 
above a certain threshold, which is often of interest in the theory of structure formation.27 

The operator ordering in the diffusion term is not unique.” This one corresponds to the 
Iro version of the stochastic equations. We discuss other operator orderings that can arise 
in Appendix A and when we present exact solutions of eq.(2.19) in Sec. III. In the more 
general treatment where one does not neglect the decaying mode, the probability function will 
also depend on the scalar field momentum variables and derivatives with respect to them will 
also appear on the right hand side. Eq.(2.19b) would then be derived by integrating out the 
momentum dependence.r” 

The effects of spatial correlations are embodied in the functional Fokker-Planck equation 

+; c c @ 6&(+$m(Y’)[ 
HCdjj’)) B($Y’)) si;F”+b-;l;ll p14jlTl], 

(2.20) 
r’,y’ m 

for the probability functional p[4j(a’)]T] d escribing the distribution of scalar field configurations 
o,(z’) on a surface of uniform 2’. This equation is not of much practical use. If the spatial 
dependence of the fields is of interest, our preferred approach is direct simulation of a net\:. ark 
of Langevin equations to generate 3-D realizations (see Sec. IV). 

D. Initial Conditions for Stochastic Inflation 

If one wishes to model structure in the Universe, then the initial conditions for the Langwin 
and Fokker-Planck are relatively straightforward. In the Lang&n formalism, one starts with a 
homogeneous and isotropic comoving lattice with initial background values, ~$~n and To. (Hfojo) 
is not an independent free parameter because one typically chooses the attractor solution of the 
separated Hamilton-Jacobi equation.) In the inflation scenario, all inhomogeneities are assumed 
to be generated subsequently by quantum noise terms. The starting homogeneous background 
values are free parameters to be fixed by observations. For example, in the case of a single scalar 
field. if one chooses the comoving size of the lattice, 2xe-*0 , to coincide with our observable 
Universe. one must choose 40 such that the initial Hubble parameter, H(&,)/mp < 10-s. in 
order for the variance of the probability function, ((Ae5)r), to b e consistent with microwave 
background limits (see Sec. III.B.l). One may feel that our choice of initial conditions ignores 
those physical processes that occurred before our calculations began. However, onlv inhomo- 
geneities with wavelengths larger than the patch size were produced before the starting time To, 
and their effects, including most nonlinear interactions, may be modelled by employing homo- 
geneous initial values for the scalar fields drawn from distributions (that could be non-Gaussian 
from the earlier evolution). 

The corresponding probability function, P(c$,]T; To, +jn), which describes the distribution 
of scalar field points on the lattice, will be referred to as the Green’s function. It thus begins as 
a delta function distribution, lim r-r: P(4jIT; To, @ye) = 6”($j - +jo). These initial conditions 
can be incorporated into the FP equation (2.19b) by adding the delta function term E”\ ~~ - 
ojs)6(T - Fe) t,o the right-hand side. 

Green’s functions at different times, To < T’ < T, are related through the integral identity 

PCljlTi TO,OjO) = r dm;P($jIT: T’,d>) P(dgT’; To,d,o) (2.21) 
-cc 
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which has a simple physical interpretation. At the intermediate time, T’, the initial patch 
xvhich originated at T = To has subdivided into a collection of horizon size cells of comoving 
wavelength 2xeeT’, where the probability of observing c5b in one cell is P(@lIT’; To,qjo). Each 
of these new cells evolves independently of the others, and at a later time 2’ each has subdivided 
into smaller horizon size cells of comoving radius 2neeT where the probability of observing 
Q is P($lT; T’, #‘). The total probability P(&?; To, 40) is just the sum over all independent 
probabilities, eq.(2.21). 

The Green’s function carries useful information about different length scales through its 
dependence on c&,. In Sec. F, we show to derive the fluctuation spectrum from the moments of 
the Green’s function. In fact. if non-Gaussian fluctuations are important for galaxy formation, 
then the Green’s function should prove to be a valuable statistic. 

E. Asymptotic Behaviour for Stochastic Inflation 

At late times, T - Tn + 00, the Fokker-Planck solution describes the local distribution 
of primordial fluctuations which evolve to form the observed cosmic structures. However, to 
compare our results with cosmological observations, we need to transform from T = ln(Ha) 
to other time hypersurfaces. Once quantum diffusion is no longer important, the evolution is 
simplest if one chooses uniform Hubble surfaces. Indeed ln(Ha) breaks down as a viable time 
variable during the transition from inflation to the radiation-dominated era because it is not 
monotonic. At an even later time, when the length scales of the fluctuations reenter the Hubble 
radius, other comoving surfaces are more natural for evolving the multi-component fluid system 
of radiation and matter. The synchronous and longitudinal gauges are the usual choices within 
the context of linear perturbation theory. Metric fluctuations in the longitudinal gauge are 
especially useful because they generalize the Newtonian potential. 

Since the variance of the quantum diffusion term in eq.(2.18) is proportional to Hz, it 
diminishes as the probability function moves down the potential and becomes unimportant when 
H’/(4r?) is smaller than < (A#)* >, as determined from the distribution (given homogeneous 
starring conditions for the patch of the universe we are interested in). Beyond that time. the 
Universe may still inflate, but the evolution of P(@lT) g is overned totally by the classical drift: 

aP(4mIT) 

8T = -&If,(O,)P(4mIT)l~ 

In the case of a single scalar field moving in an arbitrary potential, one can solve the asymptotic 
equation by choosing 4 as time. Let P(TI#) denote the probability of observing the field T on 
a uniform 4 surface. Provided quantum diffusion has ended, it is related to P(@lT) through a 
hypersurface transformation (see SBl, Sec.1V.D): 

WIQ) = f(4FY4ITh (2.23) 

where f(4) is given by (2.19a). The resulting equation, 

af’(W) 
a4 

iaWI4) = o 
+ f(4) aT 

has wave-like solutions 

(2.24) 

P(TIO) = g(T - TO - t(4)), where t(O) = J @ dd’ 
- 

Oa f(d’) 
(2.25) 
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and 9 is an arbitrary function. The distribution which uses 0 as time has the advantage that 
all the moments < (4J)” > for n 2 1 are constant. This property is a reflection of the fact 
that the variable C 2 3A0rx = 3AJ is constant in time - with A$ denoting a difference on 
a uniform @ surface. (This definition of C given in SBI extends to general nonlinear fields the 
usual linear perturbation theory C introduced by Bardeen, Steinhardt, and Turner.*‘) Thus once 
the diffusion has ended, it is natural to choose 4 rather than T for time. Actually H is a better 
choice, since 4 is not monotonic at the end of inflation when it starts oscillating. H is a function 
of 4 only during inflation and yet is monotonic during the subsequent evolution. 

F’. A Fluctuation Measure as a Function of Physical Volume 

There are practical limits to what can be computed in stochastic inflation. The obvious 
approach is to simulate the Langevin equation network for a lattice, but it is currently impractical 
to expect we can go much beyond 1283 or, possibly, 2563 points. This would apparently limit 
the range of T that could be followed for any one given realization to at most 5. One possible 
way to avoid this is to nest the lattices, starting from very large scale ones, then progressively 
decreasing the size as T increases. This would be a major computational undertaking. 

What we wish to have is a measure of the amplitude of the fluctuations which is easy to 
compute. Here, we advocate the rms fluctuation level Q on uniform 4 surfaces as a function of 
the initial condition 40 as such a measure. This turns out to be a measure of how C fluctuations 
change with varying lattice sizes. Yet this function can be determined from solutions of the one 
point Fokker-Planck equation alone as we now show. 

.4lthough one may have expected that all knowledge about spatial correlations is lost in the 
single-point probability function (2.25), since the initial condition parameter 40 is correlated 
ivith the volume of the lattice, one may recover much useful information about spatial averages 
on different volume scaies. 

If Nr. is the number of points in a fixed comoving lattice, then NLP(TJ4)dT gives the 
number of ceils in the lattice with field values between T and T+4T for a given value of @. The 
comoving length of the lattice on the side would be (27r)e- G, hence each lattice ceil is associated 
with the same fixed comoving volume U = (2~)~e- 3G/~L. The physical volume each cell has 
stretched to as measured on a uniform 4 surface is 

f&l, = 2(T)U = N;%3(T-G) (hw)-” = NLle3’“-““‘(m)-3, 
2a 

The distribution of these physical cell volumes is 

f’(w 14; h)&.n = 3v,,,, 1 P(W h)dml. (2.26) 

The lattice, on average, will encompass a physical volume 

v(&$,,) = N~(v,.,,(d; do) = / a3N~C’ WW; 40) a-. (2.27~~) 

Since the hypersurface transformation from T to 4 is’valid only after quantum diffusion has 
ended, we must use the asymptotic expression (2.25) to evaluate (2.27a). This yields 

I’(dldo) = e3t(+) (T)-” j- d&g(u). 
-m 
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where n--e changed from T to u = T - Te - t(o). This expression is independent of To, and the 
time parameter o is contained solely in the prefactor before the integral. As a result of continued 
quantum diffusion, however, the integral (2.27a) may actually diverge. This can be traced to 
the problem of eternal inflation. The integrals must be regulated to ensure convergence. This 
is done by integrating only over that region in which quantum diffusion is unimportant, as we 
show for our exact solutions in Sec. III. For regions that are not eternally inflating, there is a one 
to one correspondence between the physical volume of the lattice and the initial homogeneous 
value of the scalar field. 

One can also calculate the various moments of the distribution function (2.25) using the 
volume weight factor (2.27a) 

1 ca 
< (AT)“/& 40 >v, = L,($,ho) 

/ 
-m 0 (T - To) w-y3$y3 g(T - To - t(6)). (2.28) 

The subscript V, is a reminder that the moments are calculated as a volume average on a 
uniform o surface. Of primary interest is the second moment, < (AT)*\o; & >v., which gives 
t,he variance of T fluctuations. Once again, it is independent of TO; it depends only on o 
and 40. If one eliminates ~$0 in favor of the volume of the lattice (2.27), one may interpret 
this quantity as the fluctuations that are expected in a volume V. In linear theory, the power 
spectrum for C would be defined as the variance of 3a per In(k) interval,’ where k is the comoving 
wavenumber, on uniform Hubble (or constant 4 surfaces). It is therefore the derivative of the 

\-ariance ((4T)‘i$; ~$0) with respect to In V,,, J where the comoving volume V,, cx k-3. We now 
define the nonlinear fluctuation function in terms of a derivative per physical volume: 

F(q5, V) s 3 d < (AT)’ >v, = 3 d < (4T)2(~,+~) > alnV(dlbo) -I 
dlnV ddo ( 1, 840 

(2.29) 

If the fluctuations < (AT)*(c$~) > are small, this reduces to the fluctuation spectrum of linear 
perturbation theory as defined by SBB. A non-Gaussian example of its utility is given in Sec. 
III. 

G. Reheating and Connection with Observable 

Our analysis holds as long as the Universe is scalar field dominated. However. at some time 
the scalar field energy is transformed into radiation and matter. For wavelengths longer than 
the Hubble radius, fluctuations do not evolve during the radiation and matter-dominated eras. 
For example, the fluctuation function defined by (2.29) remains invariant. For our purposes 
here, the longitudinal gauge is convenient for evolving fluctuations after the heating of the 
Universe, both outside and inside the Hubble radius, for the metric fluctuation Ano = @H 
is a natural relativistic generalization of the Newtonian potential. For matter-dominated flat 
universes (and adiabatic perturbations), large angle microwave background fluctuations provide 
a direct measure of QH, through the Sachs-Wolfe effect. 

Within the horizon, one must then solve the perturbation equations for a multi-component 
fluid of radiation and matter. r9 During the radiation-dominated phase, perturbations oscillate 
within the Hubble radius because of pressure and damp as a result of the Hubble expansion. 
However, during the matter-dominated phase, a~ is constant both outside and within the 
Hubble radius. According to Sec. II of SBB, during the matter dominated era, Ara is related 
to 4Ha by 

3 
aH s A,a = ;AHo. (2.30) 
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The Sachs-Wolfe relation for microwave background temperature anisotropies 4T,,a/T,,a 
I valid for large angles, B 2 3’j is 

AT,,b/T,,~ = -@x/3 = -A~o/5 = -Ar,ln(Ha)/S, (2.31) 

where AnIn is the deviation in ln(Ha) on a uniform Hubble surface. (Because the symbol 
F has already been used to label our time coordinate, we will use T,,,,a to denote the microwave 
background temperature.) To give a precise comparison with microwave background obser- 
vations, maps of microwave background anisotropies could be computed by doing a stochastic 
inflation simulation for a lattice which forms a spherical shell corresponding to the surface of last 
scattering. One would have to include such details as a last scattering surface of finite thickness, 
transfer function modifications of @H describing the differences in fluctuation evolution from 
the radiation-dominated to the matter-dominated phases and Thompson scattering by ionized 
gas at photon decoupling. Then, to compare with a given experiment, the map would have to 
be convolved with the experimental beam profile. In this paper, we are only interested in rough 
estimates of how current microwave background limits constrain stochastic inflation models, and 
can ignore most of these effects. lf instrumental effects (beam smearing etc. ) are neglected, 
temperature anisotropies can be estimated directly from (2.31). In that case, the probability 
function (2.25) would give the distribution of anisotropies in a two dimensional slice. provided 
we adopted initial conditions to make the scalar field fluctuations in the current Hubble volume 
initially homogeneous. We emphasize however that a careful treatment is required to accurately 
compute the anisotropies expected for realistic experimental configurations and refer the reader 
to Bond3e and Bond and Salopeks’ for further discussion. 

III. FOKKER-PLANCK GREEN’S FUNCTION SOLUTIONS FOR AN 
EXPONENTIAL POTENTIAL 

.%n extremely useful model for providing concrete analytic illustrations of general principles 
in inflation cosmology is a single scalar field driven by an exponential potential 

V(O) = V(O) exp [ - 
d- 

$-y--l (3.1) 

Lucchin and Matarresesr were the first to give exact solutions of the cosmological background 
equations for this system. We extended their work by finding general integrals. including tran- 
sients, of the separated Hamilton-Jacobi equation, and by analytically evolving the long wave- 
length background fields.‘*~23 We have also found exact solutions of the Wheeler-deWitt equa- 
tion for homogeneous quantum fields. i* Sahnis’ found elegant exact solutions for a massless 
scalar field on a cosmological background generated by such a potential. Rat& obtained exact 
solutions of the cosmological perturbation equations in synchronous gauge. 

The Fokker-Planck equation for an exponential potential was first investigated by Ortolan, 
Lucchin, and Matarrese,20,z1 who applied both approximate analytic methods and numerical 
techniques within Starobinski’s formalism for stochastic inflation. Here, we derive analytic 
Green’s function solutions of our Fokker-Planck equation for an exponential potential, which 
incorporates the metric back-reaction by utilizing Hamilton-Jacobi theory and uses our natural 
choice for the time- coordinate. In this section, we drop the bar notation that labelled long 
wvelength fields: 4 is now just 4. We also denote P(4lT) by Pr(@) and P(TI4) by Pe(‘Fj. 

A. Derivation of Analytic Green’s Functions 
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To obtain the Green’s function for the Fokker-Planck (FP) equation of Sec. 1I.D one must 
6.rst find the attractor Hubble function solution of the SHJE to insert into the diffusion and 
drift terms of the FP equation. The attractor solution, 

H,,,(4) = R(0)e.q - j/$4imP)I R(O) = [ 3m~(y!‘,)l”’ ’ (3.2) 

of the SHJE, eq.(Zb), for a. single scalar field moving in an exponential potential (3.1), given 
in SBl, is easily verified by direct substitution. Here, a(O) is the value of Hubble parameter at 
o = 0. In the absence of the noise terms, the classical trajectories associated with this Hubble 
function move with the same constant speed: 

&r(T) - dkr(O) = J& 1 Jlp CT - To) 
-- 

As we discuss in Appendix A, there are a number of possible choices for the form of the 
Langevin equation and the form of the quantum diffusion term in the Fokker-Planck equation. 
!Ve encompass these orderings by writing the diffusion term in the form 

where 0 is a parameter ranging from 0 to 1. It measures whether in evaluating the stochastic 
noise contribution over the interval AT the Hawking temperature chosen is weighted more 
strongly at the beginning of the interval, T (&I), at the end T + dT (8=0), or in between 
(half way, at T + dT/Z, has p = l/Z). The two main forms are p=l and @ = l/Z, with the 
3=1 case following if the Ito form of the Langevin equation is adopted, and the p = l/2 case if 
the Stratanovich form is adopted. We believe the spirit of stochastic inflation, with fluctuations 
leaving the Hubble radius with a background Hawking temperature. is most nearly met if the 
Hawking temperature is chosen at the beginning of the discrete timestep. This corresponds to 
the Ito formulation with p = 1 in Sec. II. Here we are more general. The FP equation is 

8PT -=-- 
BT J& 1 -Ii/p 5 

+ d’~~~w{exp[ - E$ (1 - P,] 6 [.XP,-~$3;,] } (3.4) 

+ W - G)6(4 - 4~01, 

The parameter d is determined by precisely what approximations we adopt for treating the short 
wavelength fluctuations. and is discussed more fully in ref. 24. For slow rollover d is unity. For 
exponential potentials, it can be taken to be a constant which tends to unity as p - P, and 
deviates slightly from unity for smaller p. 

To solve (3.4), we apply variable changes and Laplace transforms to obtain a first order pde 
solvable by the method of characteristics. The solution is 

P(@JIT; To,&) = -le-(l+z% zp+~ Io--1~2z,y), 

where I3-1 is the modified Bessel function of order /3 - 1. The function r($.‘T) is 

(3.6~) 

z(+,T) = .xp(/$9 - 3, (3.6b) 
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and the function y(T) is 

y(T) = ;(I - l,p]~[l _ e-2(T-To)/b--l)], (3.6~) 

(The coefficient H(h) should not be confused with the H(0) of (3.6c), which it equals only for 
@II = 0.) 

Before turning to the interpretation and consequences of this analytic solution in Sec. B, 
we first sketch the derivation of (3.6), which the reader may wish to skip. It is useful to change 
variables from 4, PT to u, Q, where 

u = exp( 
$- 

~d/mpl, 

so the FP equation becomes first order in 

aQ a aQ 

ar = -=,,(uQ) + fx 

PT = uQ, with 0 < u < 00, 

u and second order in a/au: 

+ b -&I$$) + c6(T - T,) 6(u - u,,). 

(3.7) 

(3.8~1) 

The constants in this equation are 

Q = 2/(P - l), and f = (1 -~!3)b. (3.8b) 

Eq.( 3.&J is first order in u and second order in a/au. A Laplace transform in u space, Q(T, 3) = 
J; e--J Q(T. u)du, yields a first order partial differential equation, 

aZ, dr = s(f - b)Q + s(a - bs)$ (3.9a) 

obeying the initial condition 
Q(To, S) = ~e-*~~. (3.9b) 

(The Laplace transform is preferable over a Fourier transform since the domain of u is from 0 
to x.) A further change of variables frqm (s, 0) to (m, R) gives a simple pde 

aRfaT + aR/am = 0, m s a-‘ln(1 - a/(bs)), R E (s(m) - i)l-“bo, (3.10) 

whose solution has the form of a wave moving to the right: R = g(m-T) where g is an arbitrary 
function. In our case, g is determined by the initial conditions eq.(3.9b), yielding 

@T,s) = ~e-%~(s +z)%xp(~), (3.11) 

where the function z(T) is defined by 

a 1 
* = d2(1 -=l~p)H:(o) e2CT-To)/(~-1) _ 1> 
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and y is given by (3.6~). Abramowitz and Stegunz4 give the inverse Laplace transform in terms 
of Id-,. Back substitution leads to eq.(3.6). 

B. Discussion of Exact Solutions 

The exact solution (3.6) is rich in structure. To understaud it better, we consider various 
special cases in this subsection: (1) the late time behaviour as T - To - ca; (2) solutions with 
H(&)/mp Q 1; corresponding to initial conditions for our observable patch of the Universe; (3) 
solutions with a(&)/m, of order unity, which has pronounced non-Gaussian characteristics; 
and (4) the e.%cts of different factor orderings and boundary conditions in the Fokker-Planck 
equation. 

1. Late Time Evolution of the Probability Function and 
Observational Consequences 

.4t late times, the diffusion contribution to the probability distribution (3.6~) becomes 
unimportant, as suggested in Sec. ILE: it is a function of z only, describing a shape invariant 
wave, since y approaches the constant d*r-‘(1 - l/p)H*(&)/m$. To relate to observables, we 
perform a hypersurface transformation from T to the uniform H surface, which is the uniform 
0 hypersurface for one scalar field. This is trivial because the fluctuations are linearly related 
through (3.3): 

*T@ = - z 1 llip 42 
Through eq.(2.31), for a given choice of H(h), this asymptotic probability function is related 
to large angle Sachs-Wolfe microwave background fluctuations, subject of course to all of the 
caveats described in Sec. KG: 

*Tma/Tmb = +& (I- l/p) (A#(T)/mp)/5 

The sign of this relation is easily understood. Where Ad is negative. the 0 energy density 
fluctuation iS positive, so the gravitational potential (-a~) is negative, as is the temperature 
fluctuation. 

Recall from Sec. I1.F that we can consider the specification of a sequence of initial con- 
ditions for the constrained probability as roughly corresponding to the specification of a set of 
smoothings over various comoving volumes of the fluctuation level. In particular, we can take 
the initial value of the Hubble parameter fl(4 0 as this measure. In Fig. 1, we show a numerical ) 
calculation of the scalar field dispersion, < (A$)* >‘12, as a function of a(&,), for the case 
p = 5. The dispersion grows linearly with A(&) until H(&) - mp, where it levels off at a 
constant value because of nonlinear effects. To satisfy current large scale microwave background 
constraints, the smoothed temperature fluctuations must be below a few times 10-s. Through 
eq.(3.12b), we find the atlowed initial fluctuation level for our patch of the Universe must satisfy 
H(&)/mp 2 10-s. To ensure that the patch with this bound would have stretched enough to 
encompass our current Hubble volume imposes a constraint on when inflation ended, i.e., when 
reheat occurred: we require efi 2 lo-‘M PC-‘. Patches which started with H(&)/mp - 1 
would, on the other hand, correspond to a length far exceeding our present horizon radius to 
avoid violating microwave background limits (see Sec. IV.B.2). 

2. Probability Function for our Observable Patch of the Universe 
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Since, from Sec. B.l, the initial fluctuation level for our patch of the Universe must satisfy 
H(&)/mp 5 10-s, the argument of the modified Bessel function in (3.6) is very large, and the 
asymptotic expansion, Ip-.s(z) N ez/G, can be used: 

exp [ - (z-/] 

Since y w (I7(&,)/mp)s is small, and I - 1 u fi, the exponential in (3.tib) can be expanded: 
z - I .-a (4r/p)‘/*(q5 - &,)/mp - (T - To)/(p - 1). Th us, for these small values of H(&,)/m,, 
the constrained probability is Gaussian to high accuracy: 

P(M'; To. &I) = 
[(T - To)/(P - 1) - &ii%4 - 40)h12 

Y 13 (3.13) 

a result which is independent of p: the factor ordering problem is not important for the observ- 
able fluctuations. The exact distributions for this starting H(&)/mp for various T, shown in 
in Fig. 2, explicitly illustrate how close to Gaussians the distributions are. 

Our conclusion that the observable fluctuations will be Gaussian-distributed for an expo- 
nential potential agrees qualitatively with other workers. Bardeen and Bublik’s numerically 
integrated a similar Fokker-Planck equation and found that Gaussian fluctuations would arise 
in Xo4 /? theory, a result cont%ued by Hodges” using an analytical integration of the Langwin 
equation. We have shown that this conclusion remains valid even if the effects of metric fluctu- 
ations are included and if different operator orderings are considered. 

In the large T - Te limit, the mean and dispersion vary according to 

mu (T-To) 
<*‘=pQ+~ l-l/p and < (Ao)s >E ws = d2($ ‘)Hs(&). (3.14) 

As noted in Sec. ILD., when quantum diffusion is no longer important it is particularly 
useful to use d as time. The probability function, P(Tlo), on a uniform 4 surface is given by 
the hxpersurface transformation (2.23) 

P(TI6) = [ny(p- 1)?]-“2 exp [ - yip: 1)2] > where u=T-To-~(l-p--)(~m~‘). 

The first two moments are 

(b-ho) 
< T(+) >= To + fifil -p-l) mp , and < (AT(o))* >= 

Thus, the dispersions approach constant values which depend primarily on the initial value of 
H(Oo)/W. 

To calculate the fluctuation spectrum, we need to determine how the the physical volume 
of the lattice depends on $0 through eq.(2.27b), 

I’(aldo) = (T)-” [~]-3~exp[z!L(p- @$] % (!I$)-” [p&‘, 
(3.16) 
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The exponential term due to quantum diffusion actually increases the volume over what one 
wuld naively expect, but, for H(&)/mp << 1, it is not significant and may be safely neglected. 
The variance in T calculated using a volume average, eq.(2.28), turns out to be (3.15) re- 
expressed in terms of the physical volume rather than $00: 

A’ ccording to eq.(2.29), the fluctuation spectrum is given by differentiation with respect to the 
volume factor: 

< (aT)z >” = d%- 113 ~*(+oo) @b- II3 1 
4 27rp 7 = 277P 

-+ [(2*)-3vR3p(qq]*. (3.17) 

Fc+, v) = d’(p - 1)’ KW3V~3p(d)1h 
XP 4 

(3.18) 

If we define a physical ‘wavenumber’ scale by kphyr K V-‘fav then we obtain the usual k- 
dependence,31,s F o( k~~~~‘-‘), found in linear perturbation theory. 

3. Ultra Large Scale Structure of the Universe 

lf we consider values of the initial Hubble parameter which are large, then the fluctuation 
distribution at a point will describe contributions from scales which are very much larger than 
our current Hubble radius and are thus unobservable. In Fig. 3, we plot the final probability 
distribution for R(&) = mp. The distribution is non-Gaussian and noticeably skewed. It has 
a short tail at positive values of $I - &, and an exponential tail for negative values. The peak 
in the distribution occurs to the right of the median because of the nonlinear stochastic force. 
Some points which were initially kicked to the left eventually get strongly kicked to the right. 
On occasion, this last kick may exceed the sum of all the past kicks because the stochastic force 
increases exponentially with negative &J; hence the peak moves to the right of the mean. However, 
the exponential tail is the most striking feature of this distribution because it dramatically 
increases the number of high density peaks. (Contour maps of a large Ei(&)/mp non-Gaussian 
case and a small H(&)/mp Gaussian case are compared in Fig. 7.) This distribution. however, 
does not correspond to a distance scale which is physically observable. hfatarrese, Ortolan. 
and Lucchin?’ have integrated the Fokker-Planck equation numerically for this same situation. 
Since we integrate different equations which self-consistently include the metric back-reaction. 
our results are quantitatively different. Even so, we cannot be confident that all features of these 
high H(do)fmp cases are properly treated, since quantum gravity corrections are important at 
such large energy densities, so our formalism breaks down. 

Starobinski’” and Goncharov et al. ” described the phenomenon of eternal inflation in 
which quantum diffusion can overcome the classical drift in the Lang&n equation to drive 
some patches of the Universe to larger and larger values of the Hubble parameter. Although 
exceedingly rare in comoving volume, these regions would grow exponentially large to dominate 
the physical volume and might never reheat. Hence, the Universe would inflate ‘eternally’. 

We also find that eternal in&ion is generic. However, with our choice of time hypersurface, 
it is not immediately evident in our exact solutions. Indeed, the distr bution (3.6) rolls down 
the potential without demonstrating any irregularity as 4 + -cu. However, if one transforms 
to the +hypersurfaces then the eternal inflation becomes manifest. If quantum diffusion is no 
longer important, the probability of observing the field T on a constant 4 surface, P(T]$), is 
just P(+IT) up to a constant of proportionality according to (2.23): 

P(W) = $$-A P(W). 
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(Although it is unclear how to evaluate P(TI+) if diffusion is still important. we can use (3.19) to 
illustrate the basic behavior.) We denote the contribution to the physical volume of the lattice 
on a uniform Q surface V( +&) introduced in ILF, from fields in the interval (T,T + A’f) by 
dV(@lc#b)) = a3Nr.fIP(TI& $60) ( see 6). This function of T is strongly peaked about the classical 
trajectory (3.3). However, in the large T limit, 

dV(+$o) .+ (q)-” sy-‘e-‘/vexp[(T - To)(3 - -$-i + ZE(‘iF)j , 

diverges if p > 4/3 and /3 = 1. Thus, on a uniform 4 surface, the probability distribution is 
dominated by points with large T and thus large a. 

Eternal inflation is the source of several technical problems. Since the total physical volume 
diverges, the integrals that define the fluctuation function (2.29) are not well defined. a caose of 
difficulty even for H(&)/mp < 1. In deriving the fluctuation spectrum (3.13), we conveniently 
ignored the divergence by applying an asymptotic expansion of the Bessel functions. However, 
for H(&) Y mp, it is not clear where one should truncate the distribution. For this reason, we 
often use the probability function on a constant T surface to describe the scalar field fluctuations. 

4. Factor Ordering Problems and 
Boundary Effects in the Fokker-Planck Equation 

.\s we noted in Sec. II, for cases of interest for structure formation, different choices of 
operator ordering do not alter the probability function (3.6) significantly. However, dramatic 
deviations occur for H(pa) h mp. In this subsection, we investigate the consequences of different 
operator ordering as well a.s the effect of boundary conditions at do = --co. 

The large T - r, Fokker-Pluck distributions for A(&)/mp = 3 are plotted in Fig. 4 
for the orderings associated with p = 0,1/Z and 1. These probability functions are noticeably 
skewed, with long tails at negative values of In(z). Note that the distributions have a median 
which deviates significantly from In(z) = 0, the value it would have if the initial delta function 
in o moved only according to the classical drift. 

As one can infer from Fig. 4, our exact solutions conserve probability for ,!3 > 0. but not 
for ,5 = 0. Since the stochastic force grows exponentially with -4, some paths may apparently 
diffuse to 6 = --rxi in a finite time, where they could be either absorbed or refiected (w-emitted), 
depending upon the boundary conditions. The boundary condition which preserves probability 
may be found by integrating (3.4) from r#~ = -CC to q5 = +oa (neglecting the delta function 
terms for the moment): 

Y$ J-a WYdIT) = ~&pT) (3.20) 

- d*fW) exp _ 
8rr2 

[ 

If probability is conserved, the probability flux at 4 = -oo (the right hand side) must vanish. 
It does for 0 < @ 5 1, but not for 4 = 0. 

Although the p = 0 case is not of much physical interest since it corresponds to using the 
Harvking temperature at the end of the interval (T, T + AT) rather than at the beginning (Ito 
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formclation, p = 1) or in the middle (Stratonovich formulation, 9 = l/Z). For this case, the 
violation of probability conservation is given by,35 

I 
Co I&$ P(qqT; To, $0) = 1 - e-l’y, for p=o, (3.21) 

-cc 

where y was given by (3.6~). The violation is extremely tiny, 5 e-fl”‘), for the R($o)/mp 5 
10e5 allowed by microwave background constraints, but can be large for A(&) 2 mp. 

It is apparent from this argument that boundary effects require knowledge of the physics 
above an m’p energy density may play a role in determining the Fokker-Planck distribution. 
It was implicitly assumed in our derivation of (3.6) that (3.20) vanished. Lang&n trajectories 
that diffuse to C#I = --oo should certainly be absorbed rather than be reflected. Although one can 
debate what the emission rate of trajectories from the quantum gravity era, the main possibilities 
are encompassed by the reflecting and absorbing conditions at 4 = -cu. For absorbing boundary 
conditions, P($lT) should behave asymptotically ils 

P(rniT)-exp[p&y, as 4---c-a. (3.22) 

The justification of this prescription is given in Appendix B. along with specific examples. Here 
w discuss the main results. The Green% function solution obeying (3.22) is similar to (3.6): 

P’($lT; Tcl,$lJ) = (3.23) 

where y and z are defined by eqs.(3,6b,c). The interesting feature is that a Bessel function 
of order 1 - ,0 replaces the one of order 0 - 1 in (3.6a). Eq.(3.23) is valid for 0 < p < 1. 
and the 3 = 0,l cases are found by taking appropriate limits. For p - 1. the probability 
conserving solution (3.6) and the absorbing solution merge into the same distribution, indicating 
that boundary effects are unimportant for p = 1. This is another reason for favoring the p = 1 
operator ordering choice. By contrast, asp - 0, both solutions merge into an absorbing Green’s 
function since It(t) = I-,(z), so in this case, it is not possible to conserve probability. 

A nice choice for analytic simplicity is 4 = l/2, since the modified Bassel functions which 
enter are I--1,2(z) = mcosh(z) and I,/,(z) = msinh(z). The probability conserv- 
ing solution (3.6), 

P(e-; To,Al) = (3.24) 

differs from the Green’s function (3.23) for absorbing boundary conditions, 

@-/] -exp[- (L;1)2]], (3.25) 

only by a appropriate minus sign. Eq.(3.24) is plotted for late times in Fig. 4. The tail is 
more pronounced than for the other cases shown. The absorbing bollndary solution is plotted at 
several times for H(oo) = 3mp in Fig. 5. The final distribution II.,- ;I total probability of 0.65: 
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about l/3 of the paths have escaped from the system. It is still skew with a long tail extending 
ro large energy densities. 

Ewn for the case, p = 1, one should still be careful about boundary terms when Il(&) z 
mp. Although the total probability is indeed conserved, the mean and dispersion of 4 pick up 
diffusion contributions from boundary terms. For example, multiplying the FP equation (3.4) 
for p = I by 4 and integrating by parts twice yields an equation for the evolution of (4): 

The last term arises from the boundary term in the second integration by parts. It prevents 
the mei~n from evolving classically as a pure drift, and ensures that (4) > &I due to quantum 
diffusion. 

In conclusion, we have found that different operator orderings give significantly different 
probability distributions if H(b) 5 mp. In addition, the choice of boundary condition at 
d = --3o may have important effects for all cases except perhaps @ = 1. For 0 < p < 1, one can 
impose either a probability conserving boundary condition or a probability absorbing condition. 
If one chooses to disregard those stochastic paths that have reached arbitrarily large energy 
densities. then the latter is preferred. It does not appear that probability conserving solutions 
esist for ,a = 0. We favor 4 = 1 because the two different boundary conditions give the same 
answer. 

IV. LATTICE SIMULATIONS OF THE LANGEVIN EQUATION 

We saw in Sections II and III that when the initial conditions are considered as variables 
in the single point stochastic systems, some useful information about the power spectrum and 
other higher order correlations can be obtained. Kowever, to solve the complete problem, full 
3.dimensional realizations are required. In this section, we follow the classical drift and quantum 
diffusion of the scalar field on a comoving cubic lattice. Different points are correlated through 
the quantum noise terms given by the Fourier sum, eq.(2.10). Our numerical example is, once 
again, the system of a single scalar field with an exponential potential. This allows us to check 
our calculations with our exact solutions (3.6). In Sec. A, we reduce the equations of Sec. 
II to a form more convenient for numerical calculations and form the probability distribution 
for the field values at a single point through numerical integrations of the Lang&n equation 
network for the lattice. In Sec. B, we display two 3-D simulations; the first a standard Gaussian 
run corresponding to our present horizon volume, and the second a non-Gaussian calculation of 
ultra-large scale structure. 

A. Reduced Lang&n Equation for Inflation with an 
Exponential Potential 

For the case of inflation with an exponential potential, the Langevin equation (2.18) becomes 

44(1-, 2) s 4(~ t 4~, A) - +(T, 2) = -J$=*~T + ~s~(T, 2) (4.1) 

The noise in the momentum of the scalar field has been neglected and the attractor solution 
(3.2) of the separated Hamilton-Jacobi equation has been used. The variation 4a is related to 
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the variation 44 and the time difference 42’, so a separate stochastic equation for a does not 
have to be evolved. 

The classical drift term is usualIy much larger than the quantum diffusion term, so it is 
useful rumerically to subtract out as much of the drift as possible. In most cases. this involves a 
separate evolution of the stochastic equation for 44 with drift forces only, and no diffusion, to 
define a smooth background level to subtract off. However, for the exponential case, we are in 
the fortunate position of having a drift velocity which is independent of 4 so there is a universal 
drift which is linear in T that can be immediately subtracted. In terms of the dimensionless 
variable 

x = (4 - h)l~(d(O)) (4.2) 

describing the deviation from the classical trajectory, (3.3), the Lang&n equation has only a 
time-dependent diffusion term: 

Ax = AS+ = d(4)e-T/(P-‘) (4.3) 

In the following, we take the correction factor d(b) to be unity. Since there is no drift term to 
integrate numerically between stochastic impulses, this system is one of the easiest to compute. 
However. one of the possible origins for non-Gaussian fluctuations, nonlinear drift evolution, is 
therefore absent. Thus, for this system, we can get non-Gaussian statistics only through the 
nonlinear mode-mode coupling in the noise term associated with the exponential. 

If one is interested in the distribution of 5uctuations at a single point, say z = 0. then the 
Langevin equation involves only a single Gaussian random variable, A(T), for each value of,T: 

4x = (4zTx)l’2 e--T/(p-l) exp( - EF,y) A(T) 

.4(T) has been defined to haveunit dispersion (noting that 42’/(B)’ is the varianceof CCTCIkICCT 
.Uso, A(T) and A(Y) are statistically independent for T # T’. 

The comoving coordinates, z’, of each spatial point are labelled by three integers, n’. 
TZ?, n,3 with zi = L,Tz’/NL’~, where L, is the comoving box size. The comoving vectors z 
that appear in the Fourier sum, eq.(4.2), are also labelled by 3 integers, ml, mz, ma, with 
ki = k,,,(mi - Ni’3/2), where the minimum length of the wavevector is k,i, = 2r/L,. When 
the calculation begins, one does not know the size of the lattice as measured today, because it 
depends upon when the scalar field reheats and how much entropy is generated. The actual 
length scale today will be discussed later. For the purposes of the calculation we set k,in =~ I. 

.4s explained in Sec. ILD, we assume that the entire lattice system is homogeneous at 
To, which we take to be zero since k,,+ = 1. Thus ~(n’,n*,n~,O) starts at 0. Therefore the 
uniform initial Hubble parameter, H(h), is all that is required to set the initial conditions for 
the simulation. Thus all inhomogeneities in the system are the direct result of quantum noise 
terms that leave the horizon after To. In the jth time step, Tj to Tj+t, where Tj E (j - l)AT, 
if the comoving wavenumber has a magnitude Ikl that falls within the range eT to eTtAT, then 
the scalar field again obtains a kick given by (4.3): 

x(n’,~~‘,n~,Tj+l) = ~(n’,n~,n~,Z’j)+ As,(~(n’,n’.n~,T,)~Tj). 

Notice that the amplitude of the stochastic kick is evaluated at Tj rather than in between Tj 
and T,+l. This corresponds to our choice of Ito ordering 36 for the stochastic noise evaluarion 
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(see .ippendix A). One could instead evaluate the stochastic noise term at intermediate steps 
during the time interval, which leads to different Fokket-Planck equations (Sec. III.B.4) as 
well as different lattice simulation results than those shown here, but we exclusively adopt 
Ito ordering here. If the drift must be explicitly calculated as well, which is not requi: : for 
this exponential potential model, the classical propagation of the field from x(n’, n’, n3, I;) to 
x( fll, n2, n3, T+*) occurs first, then the stochastic impulse is added. 

The stochastic noise term modulates the Gaussian-distributed Fourier sum by the spatial 
and temporal dependence encoded in the local value of the Hubble parameter. The complex 
random fields a(k) must be properly normalized and symmetrized. We use 

a(k) = w(k)/& + ial(k 

where a~ and ar are random numbers calculated from a. Gaussian random number generator 
with unit dispersion, < Q; >g:< C$ >= 1. We also require that the Fourier sum be real, hence 
a(ml, nz, ma) = o(N - ml, N - mz, N - ma), unless one or more of the m; equals N, in which 
case a(ml, mz, ms) is real, with unit dispersion. 

The time step AT is chosen by requiring that the increment of x in going from T to Tf AT 
be less than some t: 

AT < 4xa~Ze*T’(p--l)exp(~R(~o)~). (4.5) 

If z = 0.2 and if the argument in the second exponential is always small compared to one. then 
AT < 0.2 is usually more than sufficient for the entire calculation. However, in Sec.B.2, we also 
consider the situation when H(&) z mp. In this case, some points receive several negative 
kicks in rapid succession so the value of the Hubble parameter may become enormous. The time 
step given by eq.(4.5) depends exponentially on the value of the scalar field, which makes the 
system numerically unstable. It is computationally impractical to continually diminish the time 
step. We therefore choose to monitor only those points with x larger than a threshold value 
XCUl: - 

x>xcut=-5 5. 
\/ 

xcut is five times the initial dispersion that one would calculate if the fluctuations were linear, 
eq.(3.14). Thus, at those points for which x decreases below ,ycut, we artificially set it equal to 
xcut and we do not evolve it further. This is therefore an absorbing barrier boundary condition 
at xcut. For H(&,) = l.Omp with e = 0.2, the time step is chosen to be the same at all points 
in the lattice, AT = 0.01. 

As a check of the code, we numerically integrated the Langevin equation governing fluctu- 
ations without spatial correlations, eq.(4.4). Sample trajectories are shown in Fig. 6.x for the 
fi(&)/mp = 10-s, p = 5 case. The fluctuations grow rapidly, reach their maximum amplitude 
at about T = 5, then essentiz.lly stop growing because the stochastic force decreases linearly 
with the Hubble parameter. Fig.Gb depicts the final histogram for 50,000 paths and compares 
with the exact solution, demonstrating excellent agreement. 

B. 3-D Lattice Simulations 

1. .Gaussian Simulation 

A two dimensional slice of a 643 lattice simulation is shown in Fig. 7a for the single scalar 
field model with an exponential potential and initial Hubble parameter H(do)/mp = IO-‘. 
Because the contours shown, A+/o 3 (Q - (d))/u = -2, -l,O, 1,2, where n is the dispersion 
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in the scalar field, are so densely packed we also show just the -20 contours in Fig. 8a; there 
are 91 points with @ below this, compared with the prediction of 94 for an average Gaussian 
map of this size. Fig. 7 gives a rough indication of what a large angle microwave back round 

F map would look like for this model, with an nns amplitude of ATcmb/Tcma being * lo- , smce 
AT,,,,a/Tcma is basically proportional proportional to A# through eq.(3.12b), apart from the 
caveats of Sec. KG. Since the field is very well approximated by a Gaussian-distribution, a fast 
Fourier transform on the fluctuation spectrum (F’12 cc k-‘l(p-l), given by eq.(3.18)) is a much 
simpler way to simulate the field than this Langevin network integration approach. However 
our method can be applied to the generation of non-Gaussian patterns that arise in stochastic 
inflation models. 

2. Non-Gaussian Simulation 

A two-dimensional slice of a 64s non-Gaussian lattice calculation is shown in Fig. 7b. Since 
significant non-Gaussian statistics only arise when the initial value of the Hubble parameter is 
comparable to the Planck scale, we have taken a(&,) = mp. The map of scalar field fluctuations 
for -2,.lo contours (solid) and O,l,Zo contours (dashed) is shown in Fig. ib. and for -20 
fluctuations only in Fig. 8b. A histogram of the scalar field deviations from the mean is 
depicted in Fig. 9b. As discussed in Sec. IILB.3, the distribution of scalar field values in Fig. 
9b is skewed. The distinctive tail to negative A@ dominates the appearance of the contour map. 
Since only stochastic noise over a 643 reciprocal lattice in k-space was used with our algorithm, 
the lattice simulation, which began at T = 0, is depicted at a time T, z 4, when all the waves 
are used up. (For a more efficient algorithm see ref.24.) The &map is in initial comoving 
coordinates ?> not final physical coordinates Z, where the relation is z’ = exp[cl(< T,) - a~] F. 
Since the fluctuations in D are nonlinear, this distortion of the lattice is essential in describing 
the metric (i.e., a) fluctuations at the observable final points: a(?,T,) in the distorted lattice 
obeys a very complex relation to a( 7, T,). 

Low energy density regions are scarcer than in the Gaussian case a,nd steep high peaks are 
much more common, with 192 points below -26 in the map compared with 91 Fig.7a. The 
gross features of the map are alreadv evident from the Green’s funct,ion, which is a useful first 
quantity to evaluate for more realistic non-Gaussian fluctuation models. 

Contour plots for a simulation with H(&) = 3mp are similar to those of Fig. 7b,8b except 
that the high energy density regions are more numerous with steeper -4 peaks. 

The A(&) = mp example is marginally unstable numerically: i% of the initial points were 
discarded in the leftmost bin of Fig. 9b, since they were absorbed according to our criterion (4.6). 
Even so, the numerical calculation agrees well with the exact solution. The Langevin system 
becomes very unstable for much higher initid values of the initial Hubble parameter. Even for 
H(&) = 3mp, about 10% of the paths have to be discarded. The problem is the exponential 
dependence of the stochastic force on -4, so one would require an exponentially small time step 
according to (4.5) to monitor the evolution accurately. The exact Fokker-Planck solutions of 
Sec. III.B.4, which show the importance of diffusion to large -4 for a(&) 2 mp, illustrate 
why we should expect difficulties following the Langevin system in this large A(&)/mp regime. 

The non-Gaussian statistics of the map 7b are not of relevance for observed cosmic struc- 
tures. We estimate the present size of the lattice which crossed the horizon during inflation 
when H z mp assuming that the size of the lattice for the current comoving Hubble voiwne 
must have had .R(&)/mp x 10-s to satisfy AT,,a/T,,b sz 10-s. Our time choice T is Inky, 
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where ICH was the comoving wavenumber at horizon crossing, k~/(He*) = 1. Along a classical 
trajectory, the Hubble parameter varies in time as 

H/H’ = exp [ - 
$ 

$(4 - 4pw] = exp [ - (T - T’)l(p - 1)) 

The ratio in size between a Universe which left the horizon during inflation with A’ = mp and 
one which left with H = IO-smp is 

kn - = p= = ($y’, z 1P for pz 5. 
k;, 

Although this estimate is quite p sensitive, it is clear that If’ = mp corresponds to alength scale 
very much larger than our current observable patch of the Universe. Larger p makes matters 
worse, and much smaller p violate microwave background limits. Hence, at least for this single 
scalar field model, the effects of nonlinear evolution at large wavelengths has no observable 
consequences. We emphasized these models in this paper because they were the simplest for 
which nonlinear mode-mode coupling could be computed. 

The free parameter p that controls the steepness of the exponential potential is strongly 
constrained by large angle microwave background constraints. At the moment, the best large 
angle limits come from the Soviet RELICT experiment, but the COBE satellite should soon 
surpass its sensitivity. The scale-invariant Cold Dark Matter (CDM) model (p - w) is a factor 
of 2.46, below t,he RELICT constraint, where the biasing factor 6, is between about 1 and 2.5 to 
generate the observed galaxy clustering. According to eq.(3.18), inflation with an exponential 
potentid produces a fluctuation spectrum 31/2 K k-‘/(p-‘). A reasonable estimate of the 
properly normalized fluctuation spectrum for smaller p is to multiply the scale invariant CDM 
model by (k/kG)‘l(‘-P), where the normalization scale k,’ = 10 Mpc is chosen to fix the density 
perturbations to the observed galaxy clustering level. To avoid too much power at large scales, 
p cannot be too small. The rough estimate 

($)“-) 5 2.4b, 

for k-’ = 10” Mpc, the current horizon scale, gives p 2 5 for 6, 5 2. More sophisticated 
calculations give approximately the same constraint on p.37 

V. DISCUSSION AND SUMMARY 

The main objectives of this paper were to develop a formalism for efficiently calculat- 
ing the fluctuations that develop in stochastic inflation, and to illustrate how it works for a 
single scalar field in an exponential potential, which is perhaps the simplest (often analyt- 
ically tractable) inflation model. In SB1,12 we showed that a diagonal metric of the form 
ds2 = -N2(T, z’)dTZ + e 20(TJ’)(dzz + dy* + dr2) adequately describes the evolution of inho- 
mogeneous background fluctuations that have been smoothed on scales smaller than the Hub- 
ble radius, up to second order in the spatial gradients. The ADM (3+1 split) equations for 
the inhomogeneous background fields reduce to energy and momentum-constraint equwqns, 
and evolution equations first order in time for the physical variables, +;, G and their corre- 

sponding momenta, l=f’@j = Gj/#, 8 = d/m. To the evolution equations we add classical 
stochastic noise terms which model quantum fluctuations which have crossed the horizon. The 
constraint equations do not contain noise terms because they do not explicitly contain time 
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derivatives. The solution of the ADM momentum constraint equation gives the Hubble pa- 
rameter R E If($j(T,z’),T) ks a function of the local value of the scalar fields as well as the 
time parameter. Substitution into the energy constraint leads to a partial differential equation 
for H, the separated Hamilton-Jacobi equation. Although the solutions generally depend upon 
arbitrary parameters, all solutions rapidly approach one another during inflation, resulting in a 
memory loss so that H is a function only of the local field strengths $j. Such solutions would 
be attractors. 

The dominant behavior after a stochastic impulse is for the disturbed system to rapidly 
decay to the attractor, and the subdominant behavior is for the field to drift down the potential 
along the attractor solution. It is therefore highly advantageous to adopt an approximation that 
removes the unwanted decaying mode at the outset, for both numerical and analytic reasons. By 
requiring B to be a function of dj only, we have done this. This key approximation avoids the 
unpleasantness of trying to construct a numerical algorithm to do it in the full Langevin network. 
As well, the scalar field momenta l=IQj = -(m$/(4n) 8R($j)/a+j are also just functions of the 
local field strengths &. Although much more general than the usual slow roll-over relation 
for fr4i, it has some of the same effects: the evolution equations for the momenta flIQi and 
a are dropped from the network, leaving only (first order) stochastic evolution equations for 
Oj and Q at each spatial point. With a choice of time variable T which is a function of dj 
and Q, one of these becomes redundant. However, for this approximation to be really useful, 
we would ideally like to have an analytic attractor, such as we get for slow rolldown or in the 
exponential potential case. For more general situations, one could in principle still use the 
Hamilton-Jacobi method; in practice, it is better to just integrate the equations, including the 
momentum evolution equation. 24 As well, although our approximation is excellent for the single 
scalar field model, it can sometimes fail with many scalar field degrees of freedom. 

The time surface across which the communication between short wavelength and long wave- 
length fields occurs is obviously a difficult issue. We showed that the high spatial frequency WKB 
solution on an inhomogeneous long wavelength background has the same form as the WKB so- 
lution on a homogeneous background if the local background conformal time I da(He“)-’ is 
used. Although this suggests conformal time is a preferred time variable, we found it more con- 
venient to use the related variable T = ln(H(~~)P) instead. The obvious interpretation is that 
T = in k~, where kH is the comoving wavenumber of the short wavelength fluctuations that are 
crossing the horizon. This time coordinate actually breaks down at the acceleration/deceleration 
boundary marking the end of inflation, so to follow the oscillating and ‘reheating’ phase. it is 
necessary to change hypersurfaces, e.g., to uniform Hubble surfaces - with the time H - upon 
which the evolution of the long wavelength metric perturbations is simple.3s38 

The high spatial frequency WKB solution for wavenumber k has an rms amplitude for 
the scalar field perturbations given by the local Hawking temperature when evaluated at k = 
kH, giving the amplitude of the waves. The linearization approximation at subhorizon scales 
ensures that each new wave coming across the horizon is uncorrelated with the last, making 
the stochastic noise term a Markov process. Choosing the time as kH implies, within the high 
frequency linearization approximation, that the stochastic noise is Gaussian-distributed. This 
would not be true on other hypersurfaces. 24 The noise term really requires full integration of 
the linear fluctuations on an inhomogeneous background until transients have died away, so the 
matching is really best done when k = EkH, where E < 1, as Starobinski”’ emphasized. We only 
approximately included this effect here (the parameter d of SIII), but address it more fully in 
ref.24. 

The coupling of the points that leads to spatial correlations occurs only through the stochas- 
tic impulses since background field gradients are of second order in the evolution equations and 
have therefore been dropped. Although these impulses are Gaussian-distributed at each point, 
the nonuniformity of their Hawking temperature amplitude on the T hypersurfaws implies that 
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each stochastic kick that the lattice receives is a non-Gaussian field, and the sum of these kicks 
will be even more so. Another mechanism by which non-Gaussian perturbations can arise is 
through nonlinearities associated with the drift force, even if the stochastic kicks are Gaussian 
fields. For the exponential potential model, the latter is not relevant, but for general potentials 
both effects would be inextricably coupled. 

What we wish to compute is what we can observe, the structure within our local observable 
patch of the Universe, encompassing the current Hubble volume. We can split the calculation of 
the fluctuations within this region into two steps. In the first step the ultra-large scale structure 
(ULSS) of the Universe is computed to obtain the starting conditions for our patch. Although 
there is ULSS, which is non-Gaussian, exhibiting all of the remarkable features predicted of 
eternal inflation, we expect that this will lead to relatively uniform starting conditions for the 
field and metric structure over our patch. There may be pathologies with a nonlinear coupling 
leading to some shorter distance structure from a steepening of the ULSS, but it is certainly not 
expected in the generic case, e.g., for the exponential potential model. Thus, from the point of 
view of our own observable large scale structure, the ULSS enters only as a set of N background 
field strengths, djo, and one only needs the one-point probability distribution, say P(+joIro). 
One may debate what the best time hypersurface is to specify the initial conditions for our local 
patch. The difficulty here is that we do not really know that a patch is viable until after it has 
been evolved. (In practice, the fluctuations are so small within our patch that we do in fact 
have a very good idea of how to proceed, guided by linear perturbation theory.) 

With the homogeneity assumption, the probability of the field at a given point of our 
patch begins as a delta function, limT+T, P($j,IT; TO, c$~D) = 6”(#j - G$o), so the Fokker-Planck 
solution is the Green’s function. Thus the field value at a point has a distribution which is 

W+jlT) = J 
d"4jO~(~jl~;~0,~jO)P(~jOITO)~ 

and this is non-Gaussian, but that is only because the homogeneous initial conditions are. If 
the obsermble constraint is imposed to select only those initial parameters, djo, j = 1, ..,n, 
which lead to microwave background anisotropies consistent with the observational bounds, a 
severe further selection is imposed on $jo. That data enters in the conditioning is fundamental 
to understanding stochastic inflation, since, unlike in linear perturbation theory, there is no 
unique global homogeneous background value unresponsive to backreaction as quantum modes 
are added. To see that some conditioning is essential, we note that we must, at the very least, 
select only those patches of the Universe that reheat, and reject those regions that eternally 
inflate. For a single scalar field, we used II(&) to characterize of the initial amplitude and saw 
that to explain the level of large scale structure we observe in the galaxy distribution and the 
lack of structure in the microwave background,we must have H(&,) w IO-smp. To pin it down 
precisely would require detailed simulation and confrontation with the cosmic structure data. 

We have also seen the central role that the one-point probability distribution plays as 
a function of initial constraint conditions. This conditioning is an essential requirement to 
relate stochastic inflation calculations with observations. We showed that, by considering the 
probability and the rms fluctuations in (2 as a function of the average physical volume of a patch, 
we can find a quantity analogous to the power spectrum that describes how the fluctuation 
amplitude changes with scale. 

The exponential potential model has the essence c# the standard inflation picture for -ne 
scalar field in it, and the analytic results provide considerable insight to what will occur R’ th 
other potentials. For example, the analytic one-point distributions give a clear indication of ihe 
generic nature of eternal inflation. I7 They also serve as a very useful guide for deciding how to 
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contend numerically with the problem in the simulations of stochastic inflation maps when the 
starting conditions have If(&) - mp. 

Although the exponential potential model has been very instructive, we emphasize that the 
reheating issue cannot really be ignored in stochastic inflation, since it defines the hypersurface 
that alI the stochastic trajectories must reach for the patch to be a contender for our local 
region of the Universe. (A simple reheating criterion might be that the hypersurface is one with 
a critical Hubble parameter Hr&, when R = (3/2)rj2R so, where HsR is the slow roll Hubble 
parameter.) To determine the mapping of our observed scales to the initial comoving lattice 
positions, we need reheating, so that we can work backwards using the - 60 e-foldings after the 
acceleration/deceleration boundary has been reached in conjunction with the inflation e-foldings 
to get our current horizon scale. 

The key simple image to draw from this paper is of the ULSS distribution of Fig.‘lb on 
unobservably large scales, with its high energy density non-Gaussian mountain peaks, and the 
zoomed-in structure of Fig.7a for our observable patch corresponding to an infinitessimai subscale 
of Fig.7b. Fig.7a is Gaussian, and, to satisfy microwave constraints, only a small subset of regions 
of the ULSS will do. Note that even with a hypersurface change, Fig.ia will remain Gaussian. 
However, hypersurface changes for the ULSS would give vastly different images. Indeed, if 
Figure 7b were viewed in physical space rather than initial comoving space. we would see a large 
distortion of the patch from a square lattice. On T surfaces, the peaks would become narrower. 
However, on another hypersurface, we would see huge regions of high c1 because those comoving 
regions with very high a have the local space stretched out. All these problems are of second 
order, so were never encountered in linear perturbation theory treatments. 

Nonlinear interaction is required to get non-Gaussian primordial fluctuations from inflation. 
However, the specific method for generating non-Gaussian fluctuations used in this paper will 
not be able to produce observable non-Gaussian fluctuations. This result seems to be generic for 
single field inflation models that satisfy the microwave background constraints. However, there 
are a number of possibilities that could give rise to nonlinear interactions that have not been 
well studied and are not, as yet, included in our stochastic framework. For example, the linear 
IVKB treatment of quantum fluctuations at short distances may be too naive and they really 
are non-Gaussian. There are various fundamental physical scales that could be responsible for 
leaving nonlinear imprints within the final fluctuations. Three scales are of relevance for chaotic 
inflation: (1) the Huhble scale, H z lo-smp, set by the level of fluctuations to form galaxies. 
and already discussed here; (2) the grand unified scale o = 11I-~rn~, set by particle physics; 
and (3) the Planck scale mp = G-r/*. Although GUT scale physics led to the development 
of the inflation paradigm, it is quite possible that it plays no role at all. We know, however, 
that the Planck scale must be important since gravity is fundamental to inflation. For a X$*/4 
potential, the scalar field must start at approximately 5mp for our patch of the Universe in 
order that it inflates sufficiently, a result independent of the self-coupling X; and much higher 
scalar field values are contemplated in chaotic inflation, possibly with energy densities up to m$. 
We believe that the stochastic inflation formalism provides an excellent framework within which 
to explore the different sources of nonlinearity, with the Langevin network acting like transport 
equations carrying short distance physics across the Huhble radius to eventual confrontation 
with observables. 

So far, the non-Gaussian fluctuations from inflation that have been discussed in the lit. 
erature are like the ones here, of ultra-large scale, or are a result of large fluctuations in a 
subdominant scalar field, as in the axion models,ts~‘9 or as a result of building in judiciously 
arranged structure on the potential surface for models with more than one scalar field.39s~ro 
Mthough the nonlinear scales for the latter are so far put in by hand. the form that the fluctu- 
ations take is quite instructive,39 and it is to the simulation of such models, using an extension 
of the methods in this paper, that we turn in Bond and Salopek.s4 
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APPENDIX A: THE FOKKER-PLANCK EQUATION DERIVED 
FROM THE LANGEVIN EQUATION 

In this Appendix, we review how one derives the Fokker-Planck equation from the Lang&n 
equation (see e.g., Chandrasekhar38 and van Kampe$e) and discuss how it depends upon the 
treatment of the time integral of the stochastic force. 
single variable z, 

Consider the Lang&n equation for a 

5 = f(z) + Q(z,t), C-41) 
where the stochastic noise term is uncorrelated at different times: 

< Q(z, t)Q(z, t’) >= u2(t)6(t - f’). 
(AZ) 

Thus for very short time intervals At, the distance traversed is a random walk plus a drift, 
< (AI - f(z)At)’ >= u*(z)At. To construct the associated Fokker-Planck equation, one needs 
the short time Green’s function. One possible form would be 

G(s, 1 + A+‘, t) = [o’(“‘)At]-“’ g [’ -~$$~;A’j, 

where the functional form of g depends upon the statistics of Q, G approaches an initial delta 
function distribution as At + 0, and it preserves probability, j G(z, 1 + Atjz’, t)dr = 1. The 
function g(s) peaks about s = 0 and has its first few moments given by 

g(s)& = 1, 
J 

sg(s)ds = 0, and 2g(s)ds = 1. (A4) 

If Q is Gaussian-distributed. as for our case, then G is Gaussian. However, even if it is not, the 
results are independent of the higher moments of g. With the form (A3), the discrete version of 
the Langevin equation (Al) over a time interval Al is (with z = z(t + At), z’ = z(t)) 

~(2 + At) = z(2) t f(z(t))A2 + c(z(2))[(A1)“* s] 

f(z(l))Al describes the classical drift in time At and c~(z(t))(At)‘/‘~ is the diffusion contri- 
bution. where s is Gaussian deviate (with unit dispersion). This form of the discrete Langevin 
equation with the diffusion term evaluated at the beginning of the interval is called the Ito form. 
FVe can consider a more general form: 

z(t t At) = z(t) t ~wbf[&$t) + (1 - Pb)z(t + At)]At 
b 

+ c %@bz(t) t (1 - Pb)z(t + Al)] i(W”’ -4 7 
b 

(A5a) 

where the weights 1ub and ,0b describe how the time integrals in (Al) are to be approximated 
over t,he interval At. They lie in the interval 0 to 1 and satisfy the identity Ca LL’~ = 1. 1% 
let 3 E x3a u&b. We can expand the functions f and 0 and keep terms of at most first order 
!I! 1.t. The drift term is already of that order. Only the noise part must be treated carefully: 
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the expansion of o contains a term linear in AZ, which has a stochastic contribution of order 
[~.t)‘/?. which multiplies the order [(At)‘/* s] term already there to yield a term of order At. 
Thus. 

z(t + At) = z(t) + f(z(t))A\t + o(z(t))(Al)“’ s t (1 - @(z(t)) AZ [(At)“’ s] . 

.4 shortcut to the correct form of the stochastic equation uses the Ito c.alc~Ius,~~ in which the 
square of the ‘Weiner increment’ [(At)‘/’ s] is taken to be At, so (ASa) becomes 

~(t t At) = z(1) t [f@(t)) t ;(l - &$z(t))] (At) f 0(2(l)) [(At)“24 C-456) 

The different approximations to the time integrai of (All over Al correspond to slight mod- 
ifications of the drift force, f + /p = f t (l/2)(1 - p)(aoz/&). The Ito version of the 
stochastic equation has B = 1. The Stratanovich version evaluates Q at the intermediate point 
(z(t) + z(t + Af))/Z, hence 0 = l/2. 

Given an initial probability distribution, P(s. t). one may determine the distribution at a 
little later time t + At by integration over the Green‘s function, 

P(z, t + At) = 
/ 

G(z, t + A+‘, t)P(z’, t)dx’ 

The integral may be evaluated by making a change of variables from z’ to 

(A61 

S= 
2’ t fo(z’)At -z 

o(z’)ANz C.47) 

\,Ve wish to calculate the probability function to second order in (At)‘/*. We invert (.47) to this 
order. by consider iterative approximations of 

z’ = z + ~(z’)Af”*s - f$(z’)At, 

which gives z’ = z t o(z)At’lzs to first order in (At)‘/*, and 

z’ = z + a(z)sA t 1 
$2 a(d) 
-- 
2 az - fd+ 

to second order. Similarly, to second order the volume element is 

dz’ 
o(s’)A211z 

C.48) 

(A9) 

,411 the functions on the right are evaluated at z. With these results, (A6) can be integrated to 
second order in (At)‘/*, yielding the Fokker-Planck equation: 

ap - = -g [fdr)P] + ;$ [o*w] 
at 

(A101 
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Sow that we could have derived the fn term by expanding o that entered the Green’s 
function (-43) to linear order. This is the ‘operator ordering’ ambiguity. Zote that when the 
form of ~‘3 is substituted in (AlO), we get 

aP - = -&[f(z)P] + ;-p-g [dq,)P]. at (All) 

The same derivational approach applies to n system of Langevin equations 

ij = fj(zk) + Qj(Zkrt), with < Qi(zk,t)Qj(lk,t’) >= (02)ij(zh)6(t - 1’). 

For 0 = 1, we have a Fokker-Planck equation which can be applied to many scalar fields and 
even for many spatial points: 

f3P x = - f: &[fj(z.k)pl f + C &&[tu21i~(r*!Pl (A121 
It, 

In the body of the paper we denote B by 4. 

APPENDIX B: BOUNDARY CONDITIONS FOR THE 
FOKKER-PLANCK EQUATION 

We expand on the assertion made in Sec. III.B.4 that some solutions of the Fokker-Planck 
equation depend on the choice of boundary conditions at @ = --oo. There are two types of bound- 
ary conditions that are of interest: (1) probability preserving and (2) probability absorbing. To 
discuss these conditions, it is useful to make several changes of variables of the Fokker-Planck 
equation (3.4) for an exponential potential. In this Appendix, we use PT to denote P(olTl. 

The drift term can be removed from (3.4) by using the z of eq.(3.6b) in place of #, The 
derivatives transform according to 

(G,, = (3, - yxh ($)T = &a 
so the Fokker-Planck equation becomes 

apT dZ *Y400) -z(T--T~),+~) z 2 
aT=2plr-q- 

w-la 
a2 [z a* (z-'"PT)]. 

In terms of the time parameter y introduced in (3.6~) as well as a new function 

R(y,z)= $-lP=, 
,r 

we can rewrite this as 
-=_- 
8Y 

:;*[(l-yRt$], 

(Bl) 

(B2) 

which is symmetric under the parity transformation, z - -2, 
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To obtain the probability conserving boundary condition, we integrate (BZ) over z from 0 
tcl 2: 

(83) 

The right hand side is the probability flu at z = 0. If the total probability is preserved, it 
must vanish. This condition is met if the probability function is asymptotically a power-law, 
R - z’P-~ for 0 < p < 1. For example, the solution (3.6) meets this condition. 

The condition corresponding to the boundary absorbing any stochastic paths incident upon 
it is more complex. We first consider a simple example, with p = l/2 so that eq.(BZ) reduces to 
a simple diffusion equation. The fundamental Green’s function, with no boundary constraints, 
is the usual well known Gaussian 

R’Und(~,~;~~,zo) = -&exp - 
(z - ZOY 1 1. y 

From now on, we shall let re = 1. If the boundary at z = 0 reflects all paths that reach it, then 
the resulting Green’s function may be found by adding an image source at z = -zO = -1, 

R=“““(y,r;y,,,r,, = 1) = -&Jexp[ - (z;1)2] +exp[ - ‘z;“‘]]. (85) 

so that t,he partial derivative vanishes at z = 0 and the parity is even. This solution. given by 
(.3.24), was derived in Sec. III using a Laplace transform. 

If, instead, probability is absorbed at z = 0 then one may introduce an image source at 
I = -1 so that the probability vanishes at z = 0: 

Ra*“(y,r; yTJ, zo = 1) = &[exp[- “Al)‘] -exp[- ‘z:‘)“l], (B6) 

This solution (see also eq. (3.25)) h as odd parity. For other values of 4, the method of images 
cannot be applied to eq.(B2) since it depends explicitly on z for ,0 # l/2. However. because 
of the even character of (BZ), it is nonetheless true that the appropriate probability absorbing 
solution is the odd parity Green’s function of (B2): 

RQba(y,*; y,J, ro = 1) = 2 y-‘e-(‘+‘z)/u 20 II-p(2z/y). (B7) 

1% have simply replaced the Bessel function Ip-t(2z/y) of (3.6) by its linearly independent 
partner, II-p(2z/y). One may explicitly verify that it satisfies (B2), that it is analytic for all 
real z and that is is odd in L. In addition, it approaches a delta function ils y - 0. This justifies 
the solution (3.23), which is strictly valid for 0 < /3 < 1, as the Green’s function for absorbing 
boundary conditions. As discussed in Appendix A, 0 could take on a continuous range of values 
from 0 to 1 depending upon how the stochastic noise terms are evaluated. The cases involving 
integer values, p = 0 and /3 = 1, should be treated as limits, individually as P - 0, 1; these 
were discussed in Sec.III.B.4. 

Without the change of variable, (3.6b), it would have been difficult to determine the ap 
propriate Green’s function. For example, for the case p = l/2, we emplo~~c~l an image source 
at negative values of z corresponding to imaginary values of c+. Needless to say, an imaginary 
source does not admit a simple physical interpretation. 
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FIGURE CAPTIONS 

Fig. 1: The dispersion in the scalar field for an exponential potential (3.1) with p = 5, using 
the analytic Green’s function solution of the Fokker-Planck equation (3.6), is plotted again<? the 
initial value of the Hubble parameter, H(&). The value of H(h) when our comoving horizon 
crossed the Hubble radius during inflation determines the microwave background temperature 
anisotropy dispersion, ((ATc,,,,+/Z’c,,,b)2), which is roughly proportional to the scalar field disper- 
sion through eq.(3.12b). Current limits on AT,,b/Te,,,b imply H($)/mp s lo-’ for the initial 
condition corresponding to our patch of the Universe. 

Fig. 2: Starting with a uniform value of the Hubble parameter consistent with microwave 
background anisotropy limits, A(&) = 10m5 mp, the probability function P($lT) (3.6) is shown 
at several times T = ln(Ha) for an exponential potential with p = 5. The width of P(c#BJT) grows 
as quantum fluctuations cross the Hubble radius during inflation. The horizontal axis has the 
classical drift subtracted out. The final (large T) distribution of primordial fluctuations (solid 
curve) is of interest for cosmic structure formation. It moves as a wave with constant width w 
given by (3.14). All the curves are Gaussian to an excellent approximation, a result independent 
of the choice of factor ordering in the diffusion equation. 

Fig. 3: The same system as in Fig.2, but with H(h) = l.Omp describing the homogeneous 
starting conditions for a patch of the Universe. The Ito factor ordering 3 = 1 has been assumed. 
The Fokker-Planck probability function P(@IT) given by eq.(3.6) (solid curve) is shown for late 
times when it moves as a classical wave of constant width. This non-Gaussian distribution has 
an exponential tail extending to large values of -#.’ For comparison, a Gaussian distribution of 
the same width and dispersion is also shown (dashed curve). High energy density regions are 
more numerous than the Gaussian case, whereas the opposite is true for low energy density areas. 
This probability function is not relevant for observable cosmic structures because it describes 
length scales very much larger than our present horizon volume. 

Fig. 4: The operator ordering of the Fokker-Pluck equation is not uniquely specified by the 
stochastic formalism (see eq.(3.4)). For small initial values of the Hubble parameter, H(q&,) < 
mp. the various distribution functions P(dIT) do not differ appreciably, although they do when 
H(&) =z mp as we show for the large time limit, T - To - cc in this figure. Probability is 
conserved (IP = 1) except for p = 0, which has trajectories leaking to 4 = -co. Note the 
more extensive tail in the P = l/2 case than in the p = 1 case. Because the scalar field energy 
density begins at w rn’p 1s these cases, the stochastic formalism breaks down. 

Fig. 5: If the initial value of the Hubble parameter is comparable to the Planck scale, diffusion 
may be SO rapid that some paths may actually reach 4 = --cc in a finite time. Rather than 
make these points reflect and turn back as was assumed in Fig. 4, one may simply remove these 
points from the distribution by imposing absorbing boundary conditions (eqs.(3.22), (3.23)). In 
this figure, we show the evolution of the Fokker-Planck distribution function P($jT) for 0 = l/2 
starting from a unit probability spike at T = 0. It reaches a steady state form when T > 5. 
l/3 of the scalar field trajectories have diffused to 4 = --‘x) so only Z/3 of the initial probability 
remains at late times. The final probability function is still skewed, with a long tail extending 
to large energy densities. Boundary effects are important for 0 5 p < 1, but not for /3 = 1, our 
preferred choice. 

Fig. 6: J.n (a), sample Langevin trajectories for a single scalar field moving down an exponential 
potential are shown as a function of time, T = ln(Ha). Correlations between the various paths 
have been neglected and the classical drift has been removed (see eq.(4.3)). The calculations 
started with the initial value of the Hubble parameter, A(&), shown, when the comoving scale 
k = lo-‘Mpc-’ left the horizon. Every timestep (h&e AT = 0.2) the scalar field receives 
a stochastic impulse Ad = (gasdev) A($)/(27r) AT’/* proportional to the instantaneous value 
of the Hubble parameter, where (gasdev) is a Gaussian distributed random number with unit 
variance.39 The freeze-out of the paths at T sz 5 because H decreases exponentially in 4. In 
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(b), a histogram for the final distribution in the scalar field derived using 50,000 paths for the 
inflation model of Fig. 2 is compared with the exact solution (3.6) of the Fokker-Planck equation, 
thus showing the Monte Carlo approach using Langevin trajectories is computationally viable. 

Fig. 7 Contour maps of scalar field fluctuations for a two dimensional slice of a 643 lattice 
simulation for an exponential potential stochastic infiation model with p = 5. The initial 
configurations were homogeneous, with II(&)/ mp = 1O-5 for (a) and II(&) = l.Om~ for 
(b). The solid contours correspond to -2~ and -lo deviations from the scalar field mean, (i.e., 
high energy density regions) and~the broken contours correspond to 0, 1, 20 fluctuations. The 
mean has been subtracted out. The initial condition for (a) was chosen to yield scalar field 
fluctuations that lead to structure compatible with current microwave background anisotropy 
limits; the fluctuations are Gaussian-distributed to high accuracy. (b) is one of the simplest 
models where non-Gaussian statistics can arise in cosmology. The map is in initial comoving 
position rather than final physical position and has a uniform value of a($ = eT, where 
T is the time at which the slice is viewed. Because fluctuations are much larger than allowed 
by present microwave background limits, the size of the lattice is much larger than our present 
horizon size, and as a result this map has no observable consequences. We use this model to 
illustrate some general techniques which may be applied to more realistic non-Gaussian models 
involving multiple fields. 

Fig. 8 This figure shows only the -20 contours of the scalar field distribution for the same cases 
as in Fig.?. In (a), there are 91 points with 4 < -2u, which is approximately what is predicted 
from Gaussian statistics (94). For (b), because of the long tail in Fig. 3, the high energy 
density areas with negative values of the scalar field are more numerous than in the Gaussian 
csample of (a): there are 192 points with #J 5 -20. The high energy density regions are also 
more strongly clustered at a shorter distance scale. In alternative models which could describe 
our observable Universe, a significant non-Gaussian tail would have an important impact on 
structure formation. 

Fig. 9 As a check of the numerical method, the final scalar field distributions from the lat?ice 
simulations of Fig.7a,b (solid histogram) are shown to agree with the exact solutions of eq.(3.6) 
witch d = 1 (dashed curves). For (a), with H(&) = lo-‘mp, this is a Gaussian distribution. 
In (b), of the initially 64’ = 4086 points, 22 paths wandered beyond xeut, eq.(4.6), and were 
discarded, as described in Sec. IV. Simulations with even larger H(&) have a much larger loss 
of trajectories: e.g., with H(&) = 3mp, approximately 10% of the points are discarded. In 
single scalar field models, significant non-Gaussian distributions are generated only if the scalar 
field begins with a Hubble parameter H(&) z mp, corresponding to a patch of the Universe 
f 10” times larger than our observable patch. 
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